-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentropy_coding.py
234 lines (195 loc) · 8.42 KB
/
entropy_coding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import time
import pathlib
import argparse
from os.path import isfile
import deepCABAC
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import models
import config
from utils import *
from data import DataLoader
from data import valid_datasets as dataset_names
# for sacred logging
from sacred import Experiment
from sacred.observers import MongoObserver
# sacred experiment
ex = Experiment('AI-Challenge_Entropy-Coding')
ex.observers.append(MongoObserver.create(url=config.MONGO_URI,
db_name=config.MONGO_DB))
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
def configuration():
r"""configuration settings
"""
parser = argparse.ArgumentParser(description='Entropy Coding')
parser.add_argument('dataset', metavar='DATA', default='cifar10',
choices=dataset_names,
help='dataset: ' +
' | '.join(dataset_names) +
' (default: cifar10)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet)')
parser.add_argument('--layers', default=56, type=int, metavar='N',
help='number of layers in ResNet (default: 56)')
parser.add_argument('--width-mult', default=1.0, type=float, metavar='WM',
help='width multiplier to thin a network '
'uniformly at each layer (default: 1.0)')
parser.add_argument('--ckpt', default='', type=str, metavar='PATH',
help='path of checkpoint for testing model (default: none)')
# for evaluation
parser.add_argument('-E', '--evaluate', dest='evaluate', action='store_true',
help='test model?')
parser.add_argument('-C', '--cuda', dest='cuda', action='store_true',
help='use cuda?')
parser.add_argument('-g', '--gpuids', metavar='GPU', default=[0],
type=int, nargs='+',
help='GPU IDs for using (default: 0)')
parser.add_argument('--datapath', default='../data', type=str, metavar='PATH',
help='where you want to load/save your dataset? (default: ../data)')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
cfg = parser.parse_args()
return cfg
@ex.config
def hyperparam():
"""
sacred exmperiment hyperparams
:return:
"""
args = configuration()
@ex.main
def main(args):
global arch_name
if args.cuda and not torch.cuda.is_available():
raise Exception('No GPU found, please run without --cuda')
# set model name
arch_name = set_arch_name(args)
print('\n=> creating model \'{}\''.format(arch_name))
model = models.__dict__[args.arch](data=args.dataset, num_layers=args.layers,
width_mult=args.width_mult)
if model is None:
print('==> unavailable model parameters!! exit...\n')
exit()
# checkpoint file
ckpt_dir = pathlib.Path('checkpoint') / arch_name / args.dataset
ckpt_file = ckpt_dir / args.ckpt
# for evaluation
if args.evaluate:
if args.cuda:
torch.cuda.set_device(args.gpuids[0])
with torch.cuda.device(args.gpuids[0]):
model = model.cuda()
criterion = criterion.cuda()
model = nn.DataParallel(model, device_ids=args.gpuids,
output_device=args.gpuids[0])
cudnn.benchmark = True
# Data loading
print('==> Load data..')
start_time = time.time()
train_loader, val_loader = DataLoader(args.batch_size, args.workers,
args.dataset, args.datapath,
args.cuda)
elapsed_time = time.time() - start_time
print('===> Data loading time: {:,}m {:.2f}s'.format(
int(elapsed_time//60), elapsed_time%60))
print('===> Data loaded..')
if isfile(ckpt_file):
print('==> Loading Checkpoint \'{}\''.format(args.ckpt))
checkpoint = load_model(model, ckpt_file,
main_gpu=args.gpuids[0], use_cuda=args.cuda)
print('==> Loaded Checkpoint \'{}\''.format(args.ckpt))
# evaluate on validation set
print('\n===> [ Evaluation ]')
start_time = time.time()
acc1, acc5 = validate(args, val_loader, None, model, criterion)
elapsed_time = time.time() - start_time
acc1 = round(acc1.item(), 4)
acc5 = round(acc5.item(), 4)
ckpt_name = '{}-{}-{}'.format(arch_name, args.dataset, args.ckpt[:-4])
save_eval([ckpt_name, acc1, acc5])
print('====> {:.2f} seconds to evaluate this model\n'.format(
elapsed_time))
return acc1
else:
print('==> no checkpoint found \'{}\''.format(
args.ckpt))
exit()
# load checkpoint for entropy coding
if isfile(ckpt_file):
print('==> Loading Checkpoint \'{}\''.format(args.ckpt))
checkpoint = load_model(model, ckpt_file,
main_gpu=args.gpuids[0], use_cuda=args.cuda)
print('==> Loaded Checkpoint \'{}\''.format(args.ckpt))
else:
print('==> no checkpoint found \'{}\''.format(
opt.ckpt))
exit()
# set encoder
encoder = deepCABAC.Encoder()
interv = 0.1
stepsize = 15
_lambda = 0.
# encoding..
print('==> Encoding..')
for name, param in model.state_dict().items():
if '.weight' in name:
encoder.encodeWeightsRD( weights, interv, stepsize, _lambda )
else:
encoder.encodeWeightsRD( weights, interv, stepsize + 4, _lambda )
stream = encoder.finish()
with open(ckpt_dir / 'encoded_weights.bin', 'wb') as f:
f.write(stream)
def validate(args, val_loader, epoch, model, criterion):
r"""Validate model each epoch and evaluation
"""
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5,
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.cuda:
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
if i % args.print_freq == 0:
progress.print(i)
end = time.time()
print('====> Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
# logging at sacred
ex.log_scalar('test.loss', losses.avg, epoch)
ex.log_scalar('test.top1', top1.avg.item(), epoch)
ex.log_scalar('test.top5', top5.avg.item(), epoch)
return top1.avg, top5.avg
if __name__ == '__main__':
start_time = time.time()
ex.run()
elapsed_time = time.time() - start_time
print('====> total time: {}h {}m {:.2f}s'.format(
int(elapsed_time//3600), int((elapsed_time%3600)//60), elapsed_time%60))