-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
120 lines (88 loc) · 3.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import pandas as pd
import numpy as np
import sqlalchemy
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine
from flask import Flask, jsonify, render_template
from flask_sqlalchemy import SQLAlchemy
app = Flask(__name__)
#################################################
# Database Setup
#################################################
app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///db/bellybutton.sqlite"
db = SQLAlchemy(app)
# reflect an existing database into a new model
Base = automap_base()
# reflect the tables
Base.prepare(db.engine, reflect=True)
# Save references to each table
Samples_Metadata = Base.classes.sample_metadata
Samples = Base.classes.samples
@app.route("/")
def index():
"""Return the homepage."""
return render_template("index.html")
@app.route("/names")
def names():
"""Return a list of sample names."""
# Use Pandas to perform the sql query
stmt = db.session.query(Samples).statement
df = pd.read_sql_query(stmt, db.session.bind)
# Return a list of the column names (sample names (ids))
return jsonify(list(df.columns)[2:])
@app.route("/metadata/<sample>")
def sample_metadata(sample):
"""Return the MetaData for a given sample."""
sel = [
Samples_Metadata.sample,
Samples_Metadata.ETHNICITY,
Samples_Metadata.GENDER,
Samples_Metadata.AGE,
Samples_Metadata.LOCATION,
Samples_Metadata.BBTYPE,
Samples_Metadata.WFREQ,
]
results = db.session.query(*sel).filter(Samples_Metadata.sample == sample).all()
# Create a dictionary entry for each row of metadata information
sample_metadata = {}
for result in results:
sample_metadata["sample"] = result[0]
sample_metadata["ETHNICITY"] = result[1]
sample_metadata["GENDER"] = result[2]
sample_metadata["AGE"] = result[3]
sample_metadata["LOCATION"] = result[4]
sample_metadata["BBTYPE"] = result[5]
sample_metadata["WFREQ"] = result[6]
#print(sample_metadata)
return jsonify(sample_metadata)
########BONUS#################
@app.route("/wfreq/<sample>")
def wfreq(sample):
"""Return a 'WFREQ' value from users input from 'sample id' """
gageresult = db.session.query(Samples_Metadata.WFREQ).filter(Samples_Metadata.sample == sample).first()
""" Prettify results """
# result_gage = {}
# result_gage['WFREQ'] = gageresult
#print(gageresult)
#print(result_gage)
return jsonify(gageresult)
@app.route("/samples/<sample>")
def samples(sample):
"""Return `otu_ids`, `otu_labels`,and `sample_values`."""
stmt = db.session.query(Samples).statement
df = pd.read_sql_query(stmt, db.session.bind)
# Filter the data based on the sample number and
# only keep rows with values above 1
# sort values for slicing later
sample_data = df.loc[df[sample] > 1, ["otu_id", "otu_label", sample]].sort_values(by=sample, ascending=False)
# Format the data to send as json
data = {
"otu_ids": sample_data.otu_id.values.tolist(),
"sample_values": sample_data[sample].values.tolist(),
"otu_labels": sample_data.otu_label.tolist(),
}
return jsonify(data)
if __name__ == "__main__":
app.run()