-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrejection_sampling.cpp
355 lines (314 loc) · 11.7 KB
/
rejection_sampling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#include "rejection_sampling.hpp"
#include "Data.hpp"
#include "changepoint.hpp"
#include "histogram_type.hpp"
#include <vector>
rejection_sampling::rejection_sampling(double start, double cp_start, double end, long long int sample_size, probability_model *pm, double cp_prior, double space, int seed, bool calculate_mean, bool calculate_sample_histogram, unsigned int grid) {
m_smcsamplers_prior = 0;
m_start_time = start;
m_cp_start = cp_start;
m_end_time = end;
m_sample_size = sample_size;
m_pm = pm;
m_cp_prior = cp_prior;
m_space = space;
m_spacing_prior = m_space > 0;
m_seed = seed;
gsl_rng_env_setup();
m_r_type = gsl_rng_default;
m_r = gsl_rng_alloc(m_r_type);
gsl_rng_set(m_r, seed);
m_calculate_mean = calculate_mean;
m_sample = NULL;
m_dimension_frequency_count[0] = 0;
m_dimension_frequency_count[1] = 0;
m_histogram = NULL;
m_calculate_sample_histogram = calculate_sample_histogram;
m_num_bins = grid;
if (m_calculate_sample_histogram == 1) {
double bin_width = (m_end_time - m_cp_start) / (double) m_num_bins;
bool calculate_1d_sample_histogram = true;
bool weighted_histogram = false;
bool bounded = true;
int max_dim = 0;
m_histogram = new Histogram_Type<changepoint>( m_cp_start, m_end_time, m_num_bins, bin_width, bounded, weighted_histogram, calculate_1d_sample_histogram, max_dim );
m_histogram->set_value_function( &changepoint::getchangepoint );
}
m_end_of_int_changepoint = new changepoint(m_end_time, 0, 0, 0);
m_pm->set_data_index(m_end_of_int_changepoint);
}
rejection_sampling::~rejection_sampling() {
gsl_rng_free(m_r);
if (m_sample) {
for (long long int i = 0; i < m_sample_size; i++) {
delete m_sample[i];
}
delete [] m_sample;
}
if (m_histogram) {
delete m_histogram;
}
delete m_end_of_int_changepoint;
}
double rejection_sampling::alternate_likelihood(changepoint *obj1, changepoint *obj2) {
unsigned long long int i1 = obj1->getdataindex();
unsigned long long int i2 = obj2->getdataindex();
double t1 = obj1->getchangepoint();
double t2 = obj2->getchangepoint();
double lambda = obj1->getmeanvalue();
double likelihood = (i2 - i1) * log(lambda) - lambda * (t2- t1);
return likelihood;
}
double rejection_sampling::sample_mean(changepoint *obj1) {
double alpha;
double beta;
double lambda;
if (!obj1) {
alpha = 4.5;
beta = 1/1.5;
} else {
lambda = obj1->getmeanvalue();
if (lambda < 1e-100) {
lambda = 1e-100;
}
beta = 5.0 / lambda;
if (isinf(beta)) {
beta = DBL_MAX/100;
}
alpha = lambda * lambda / 5.0;
if (alpha == 0) {
alpha = DBL_MIN*100;
}
}
double mean = gsl_ran_gamma(m_r, alpha, beta);
if (mean != mean) {
cerr << lambda << " " << alpha << " " << 1.0 / beta << endl;
}
if (mean <= 0) {
mean = DBL_MIN; //1e-100;
}
return mean;
}
void rejection_sampling::sample_from_prior(Particle<changepoint> ** previous_sample) {
int ncps;
double length_of_interval = m_end_time - m_cp_start;
changepoint *cpintercept = NULL;
changepoint *cp = NULL, *cp1 = NULL;
unsigned long long int data_index_start = m_pm->get_data()->find_data_index(m_cp_start);
double mean, likelihood;
m_sample = new Particle<changepoint> *[m_sample_size];
for (int i = 0; i < m_sample_size; i++) {
cpintercept = new changepoint(m_cp_start, data_index_start, 0, 0);
m_sample[i] = new Particle<changepoint>(0, NULL, cpintercept);
ncps = gsl_ran_poisson(m_r, m_cp_prior * length_of_interval);
if(m_spacing_prior && ncps>1)
ncps=1;
if (ncps > 0) {
vector<double> changepoints (ncps);
for (int j = 0; j < ncps; j++) {
changepoints[j] = gsl_ran_flat(m_r, m_cp_start, m_end_time);
}
sort(changepoints.begin(), changepoints.end());
cp = new changepoint(changepoints[0], 0, 0, 0);
m_pm->set_data_index(cp, 0, cpintercept);
if (previous_sample) {
int dim = previous_sample[i]->get_dim_theta();
mean = previous_sample[i]->get_theta_component(dim - 1)->getmeanvalue();
} else {
if (!m_smcsamplers_prior) {
mean = m_pm->calculate_mean(cpintercept, cp, NULL);
} else {
mean = sample_mean(NULL);
}
}
cpintercept->setmeanvalue(mean);
if (m_smcsamplers_prior) {
likelihood = alternate_likelihood(cpintercept, cp);
} else {
likelihood = m_pm->log_likelihood_interval(cpintercept, cp, NULL);
}
cpintercept->setlikelihood(likelihood);
for (int j = 0; j < ncps - 1; j++) {
cp1 = new changepoint(changepoints[j + 1], 0, 0, 0);
m_pm->set_data_index(cp1, 0, cp);
if (m_smcsamplers_prior) {
mean = sample_mean(cpintercept);
} else {
mean = m_pm->calculate_mean(cp, cp1, cpintercept);
}
cp->setmeanvalue(mean);
if (m_smcsamplers_prior) {
likelihood = alternate_likelihood(cp, cp1);
} else {
likelihood = m_pm->log_likelihood_interval(cp, cp1, cpintercept);
}
cp->setlikelihood(likelihood);
m_sample[i]->add_component(cp, j);
cpintercept = cp;
cp = cp1;
}
if (m_smcsamplers_prior) {
mean = sample_mean(cpintercept);
} else {
mean = m_pm->calculate_mean(cp, m_end_of_int_changepoint, cpintercept);
}
cp->setmeanvalue(mean);
if (m_smcsamplers_prior) {
likelihood = alternate_likelihood(cp, m_end_of_int_changepoint);
} else {
likelihood = m_pm->log_likelihood_interval(cp, m_end_of_int_changepoint, cpintercept);
}
cp->setlikelihood(likelihood);
m_sample[i]->add_component(cp, ncps-1);
changepoints.clear();
} else {
if (previous_sample) {
int dim = previous_sample[i]->get_dim_theta();
mean = previous_sample[i]->get_theta_component(dim - 1)->getmeanvalue();
} else {
if (!m_smcsamplers_prior) {
mean = m_pm->calculate_mean(cpintercept, m_end_of_int_changepoint, NULL);
} else {
mean = sample_mean(NULL);
}
}
cpintercept->setmeanvalue(mean);
if (m_smcsamplers_prior) {
likelihood = alternate_likelihood(cpintercept, m_end_of_int_changepoint);
} else {
likelihood = m_pm->log_likelihood_interval(cpintercept, m_end_of_int_changepoint, NULL);
}
cpintercept->setlikelihood(likelihood);
}
}
}
void
rejection_sampling::run_simulation() {
if (m_cp_start >= m_end_time) {
cerr << "rejection_sampling: no valid changepoints" << endl;
exit(1);
}
Data<double> *data = m_pm->get_data();
unsigned long long int data_index_start = data->find_data_index(m_start_time);
unsigned long long int data_index_end = m_end_of_int_changepoint->getdataindex();
unsigned long long int data_index_temp = 0;
double mle = calculate_mle(data_index_start, data_index_end);
int accepted_samples = 0;
double current_cp;
double likelihood_left = 0, likelihood_right = 0;
double log_posterior = 0;
double u_rv;
changepoint **cpvector = NULL;
changepoint *cpintercept = NULL;
int n_cps = 0;
m_sample = new Particle<changepoint> *[m_sample_size];
long long int attempts = 0;
while (accepted_samples < m_sample_size) {
attempts++;
current_cp = draw_from_prior();
if (current_cp > m_end_time) {
likelihood_left = m_zero_cp_likelihood;
} else {
data_index_temp = data->find_data_index(current_cp, 0, data_index_start);
likelihood_left = m_pm->log_likelihood_interval_with_count(m_start_time, current_cp, data_index_temp - data_index_start);
likelihood_right = m_pm->log_likelihood_interval_with_count(current_cp, m_end_time, data_index_end - data_index_temp);
}
u_rv = log( gsl_ran_flat(m_r, 0, 1));
if (likelihood_left + likelihood_right > mle) {
cerr << "rejection_sampling: likelihood is greater than mle" << endl;
exit(1);
}
if (u_rv < likelihood_left + likelihood_right - mle) {
cpintercept = new changepoint(m_start_time, data_index_start, likelihood_left, 0);
if (current_cp <= m_end_time) {
n_cps = 1;
cpvector = new changepoint *[1];
cpvector[0] = new changepoint(current_cp, data_index_temp, likelihood_right, 0);
m_dimension_frequency_count[1]++;
if (m_calculate_mean) {
cpintercept->setmeanvalue(m_pm->calculate_mean(cpintercept, cpvector[0]));
cpintercept->setvarvalue(m_pm->get_var());
cpvector[0]->setmeanvalue(m_pm->calculate_mean(cpvector[0], m_end_of_int_changepoint));
cpvector[0]->setvarvalue(m_pm->get_var());
}
} else {
m_dimension_frequency_count[0]++;
if (m_calculate_mean) {
cpintercept->setmeanvalue(m_pm->calculate_mean(cpintercept, m_end_of_int_changepoint));
cpintercept->setvarvalue(m_pm->get_var());
}
}
m_sample[accepted_samples] = new Particle<changepoint>(n_cps, cpvector, cpintercept);
log_posterior = likelihood_left + likelihood_right;
log_posterior += n_cps * log(m_cp_prior) - m_cp_prior * (m_end_time - m_cp_start);
if (n_cps == 1) {
log_posterior += m_cp_prior * (m_end_time - current_cp);
}
m_sample[accepted_samples]->set_log_posterior(log_posterior);
if (m_calculate_sample_histogram) {
m_histogram->calculate_bin(m_sample[accepted_samples], n_cps);
m_histogram->increment_1d_bin_counts(1);
}
accepted_samples++;
n_cps = 0;
cpvector = NULL;
cpintercept = NULL;
//cout << "accept" <<endl;
}
likelihood_left = likelihood_right = 0;
}
m_acceptance_rate = (double) m_sample_size / attempts;
}
double
rejection_sampling::draw_from_prior() {
return gsl_ran_exponential (m_r, 1.0/m_cp_prior) + m_cp_start;
}
double
rejection_sampling::calculate_mle(double data_index_start, double data_index_end) {
Data<double> *data = m_pm->get_data();
unsigned long long int data_index_1 = data->find_data_index(m_cp_start, 0, data_index_start);
double current_likelihood;
double current_data_point;
double mle = 0;
if (m_start_time != m_cp_start) {
current_likelihood = m_pm->log_likelihood_interval_with_count(m_start_time, m_cp_start, data_index_1 - data_index_start);
current_likelihood += m_pm->log_likelihood_interval_with_count(m_cp_start, m_end_time, data_index_end - data_index_1);
mle = current_likelihood;
}
for (int i = data_index_1; i < data_index_end; i++) {
current_data_point = data->m_X[0][i];
current_likelihood = m_pm->log_likelihood_interval_with_count(m_start_time, current_data_point, i - data_index_start);
current_likelihood += m_pm->log_likelihood_interval_with_count(current_data_point, m_end_time, data_index_end - i);
if (current_likelihood > mle || mle == 0) {
mle = current_likelihood;
}
current_likelihood = m_pm->log_likelihood_interval_with_count(m_start_time, current_data_point + DBL_MIN,
i + 1 - data_index_start);
current_likelihood += m_pm->log_likelihood_interval_with_count(current_data_point + DBL_MIN, m_end_time,
data_index_end - i - 1);
if (current_likelihood > mle) {
mle = current_likelihood;
}
}
/* corresponds to no changepoint */
current_likelihood = m_pm->log_likelihood_interval_with_count(m_start_time, m_end_time, data_index_end - data_index_start);
//cout << current_likelihood << " " << data_index_end << " " << data_index_start << " " << m_start_time << " " << m_end_time;
m_zero_cp_likelihood = current_likelihood;
if (current_likelihood > mle) {
mle = current_likelihood;
}
return mle;
}
void
rejection_sampling::write_frequency_counts_to_file(const char* output_filename) {
ofstream OutputStream(output_filename, ios::out);
OutputStream<<setiosflags(ios::fixed);
//OutputStream.precision((int)log10());
map<unsigned int,unsigned long long int>::iterator iter = m_dimension_frequency_count.begin();
while(iter != m_dimension_frequency_count.end()){
if(iter->second)
OutputStream << iter->first << "\t" << (double)iter->second/m_sample_size << endl;
++iter;
}
OutputStream.close();
}