-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_lstm.py
124 lines (104 loc) · 4.91 KB
/
run_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import os
import tensorflow as tf
from kddcup_dataset import KDDCupDataset
from quick_experiment import utils
from models.kdd_lstm import KDDCupLSTMModel, KDDCupBiLSTMModel
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--base_logs_dirname', type=str, default=None,
help='Path to directory to store tensorboard info')
parser.add_argument('--filename', type=str,
help='The path to the pickled file with the processed'
'sequences.')
parser.add_argument('--test_prediction_dir', type=str,
help='The path to the directory to store the '
'predictions')
parser.add_argument('--training_epochs', type=int, default=1000,
help='The number of epochs to run.')
parser.add_argument('--runs', type=int, default=1,
help='Number of times to run the experiment with'
'different samples')
parser.add_argument('--hidden_layer_size', type=int, default=100,
help='Number of cells in the recurrent layer.')
parser.add_argument('--batch_size', type=int, default=100,
help='Number if instances to process at the same time.')
parser.add_argument('--log_values', type=int, default=50,
help='How many training epochs to wait before logging'
'the accuracy in validation.')
parser.add_argument('--max_num_steps', type=int, default=100,
help='Number of time steps to unroll the network.')
parser.add_argument('--dropout_ratio', type=float, default=0.3,
help='Dropout for the input layer and the recurrent '
'layer.')
parser.add_argument('--course_number', type=str,
help='Number of the course to identify predictions.')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='Learning rate.')
parser.add_argument('--model', type=str, default='lstm',
help='Name of the model to run. The variation is in the'
'difference function between co-embeddings. '
'Possible values are lstm and bilstm.')
return parser.parse_args()
MODELS = {
'lstm': KDDCupLSTMModel,
'bilstm': KDDCupBiLSTMModel
}
def read_configuration(args):
config = {
'hidden_layer_size': args.hidden_layer_size,
'batch_size': args.batch_size,
'log_values': args.log_values,
'max_num_steps': args.max_num_steps,
'dropout_ratio': args.dropout_ratio,
'name': args.model,
'learning_rate': args.learning_rate,
}
dataset_config = {'train': 0.85, 'test': 1, 'validation': 0.15}
return config, dataset_config
def main():
args = parse_arguments()
experiment_config, partitions = read_configuration(args)
print('Reading dataset')
train_sequences, test_sequences, train_labels, test_labels =\
utils.pickle_from_file(args.filename)
print('Creating samples')
kddcup_dataset = KDDCupDataset(padding_value=-1)
kddcup_dataset.create_fixed_samples(
train_sequences, train_labels, test_sequences, test_labels,
partition_sizes=partitions, samples_num=args.runs)
kddcup_dataset.set_current_sample(0)
print('Dataset Configuration')
print(partitions)
print('Experiment Configuration')
print(experiment_config)
if args.base_logs_dirname:
utils.safe_mkdir(args.base_logs_dirname)
utils.safe_mkdir(args.test_prediction_dir)
for run in range(args.runs):
print('Running iteration {} of {}'.format(run + 1, args.runs))
kddcup_dataset.set_current_sample(run)
if args.base_logs_dirname:
tf.reset_default_graph()
logs_dirname = os.path.join(
args.base_logs_dirname,
'c{}_run{}'.format(args.course_number, run))
utils.safe_mkdir(logs_dirname)
experiment_config['logs_dirname'] = logs_dirname
model = MODELS[args.model](kddcup_dataset, **experiment_config)
model.fit(partition_name='train',
training_epochs=args.training_epochs,
close_session=False)
predicted_labels = model.predict('test')
prediction_dirname = os.path.join(
args.test_prediction_dir,
'predictions_c{}_run{}.p'.format(args.course_number, run))
utils.pickle_to_file(predicted_labels, prediction_dirname)
utils.pickle_to_file(
(model.training_performance, model.validation_performance),
os.path.join(
args.test_prediction_dir,
'performances_c{}_run{}.p'.format(args.course_number, run)))
print('All operations finished')
if __name__ == '__main__':
main()