Skip to content

Repository dedicated to the practical concepts of Model Identification & Data Analysis in Python

Notifications You must be signed in to change notification settings

mirkousuelli/time-series-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

time-series-analysis

Repository dedicated to the practical concepts of Model Identification & Data Analysis in Python

estimation.ipynb

  1. Estimators
    1.1) Mean estimator
    1.1.1) Detrend
    1.2) Covariance estimator
    1.3) Spectrum estimator
  2. Whiteness Anderson Test
    2.1) Procedure
  3. Homework
    3.1) Mean estimator
    3.2) Covariance estimator
    3.3) Spectrum estimator

identification.ipynb

  1. Covariance and Partial Covariance
    1.1) AR(n) data identification : 𝑃𝐴𝑅𝐶𝑂𝑉(𝜏)
    1.2) MA(n) data identification : 𝜌(𝜏)
    1.3) ARMA(n,m) data identification
  2. Criterions
    2.1) FPE : Final Predictor Error
    2.1) AIC : Akaike Information Criterion
    2.3) MDL : Minimum Description Length
  1. Procedure
    3.1) Realization measurments
    3.2) Parameters prediction
    3.2.1) LS method
    3.2.2) Durbin-Levinson method
    3.3) Variance prediction error
    3.4) Criterion computation
    3.4.1) FPE
    3.4.2) AIC
    3.4.3) MDL
    3.5) Model Selection
    3.5.1) 30 Samples
    3.5.2) 50 Samples
    3.5.3) 500 Samples

About

Repository dedicated to the practical concepts of Model Identification & Data Analysis in Python

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published