-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathhnatt.py
287 lines (252 loc) · 10.6 KB
/
hnatt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import datetime, pickle, os
import numpy as np
import keras
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import *
from keras import regularizers
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras import backend as K
from keras.utils import CustomObjectScope
from keras.engine.topology import Layer
from keras import initializers
from util.text_util import normalize
from util.glove import load_glove_embedding
# Uncomment below for debugging
# from tensorflow.python import debug as tf_debug
# sess = K.get_session()
# sess = tf_debug.LocalCLIDebugWrapperSession(sess)
# K.set_session(sess)
TOKENIZER_STATE_PATH = 'saved_models/tokenizer.p'
GLOVE_EMBEDDING_PATH = 'saved_models/glove.6B.100d.txt'
class Attention(Layer):
def __init__(self, regularizer=None, **kwargs):
super(Attention, self).__init__(**kwargs)
self.regularizer = regularizer
self.supports_masking = True
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.context = self.add_weight(name='context',
shape=(input_shape[-1], 1),
initializer=initializers.RandomNormal(
mean=0.0, stddev=0.05, seed=None),
regularizer=self.regularizer,
trainable=True)
super(Attention, self).build(input_shape)
def call(self, x, mask=None):
attention_in = K.exp(K.squeeze(K.dot(x, self.context), axis=-1))
attention = attention_in/K.expand_dims(K.sum(attention_in, axis=-1), -1)
if mask is not None:
# use only the inputs specified by the mask
# import pdb; pdb.set_trace()
attention = attention*K.cast(mask, 'float32')
weighted_sum = K.batch_dot(K.permute_dimensions(x, [0, 2, 1]), attention)
return weighted_sum
def compute_output_shape(self, input_shape):
print(input_shape)
return (input_shape[0], input_shape[-1])
class HNATT():
def __init__(self):
self.model = None
self.MAX_SENTENCE_LENGTH = 0
self.MAX_SENTENCE_COUNT = 0
self.VOCABULARY_SIZE = 0
self.word_embedding = None
self.model = None
self.word_attention_model = None
self.tokenizer = None
self.class_count = 2
def _generate_embedding(self, path, dim):
return load_glove_embedding(path, dim, self.tokenizer.word_index)
def _build_model(self, n_classes=2, embedding_dim=100, embeddings_path=False):
l2_reg = regularizers.l2(1e-8)
# embedding_weights = np.random.normal(0, 1, (len(self.tokenizer.word_index) + 1, embedding_dim))
# embedding_weights = np.zeros((len(self.tokenizer.word_index) + 1, embedding_dim))
embedding_weights = np.random.normal(0, 1, (len(self.tokenizer.word_index) + 1, embedding_dim))
if embeddings_path:
embedding_weights = self._generate_embedding(embeddings_path, embedding_dim)
# Generate word-attention-weighted sentence scores
sentence_in = Input(shape=(self.MAX_SENTENCE_LENGTH,), dtype='int32')
embedded_word_seq = Embedding(
self.VOCABULARY_SIZE,
embedding_dim,
weights=[embedding_weights],
input_length=self.MAX_SENTENCE_LENGTH,
trainable=True,
mask_zero=True,
name='word_embeddings',)(sentence_in)
word_encoder = Bidirectional(
GRU(50, return_sequences=True, kernel_regularizer=l2_reg))(embedded_word_seq)
dense_transform_w = Dense(
100,
activation='relu',
name='dense_transform_w',
kernel_regularizer=l2_reg)(word_encoder)
attention_weighted_sentence = Model(
sentence_in, Attention(name='word_attention', regularizer=l2_reg)(dense_transform_w))
self.word_attention_model = attention_weighted_sentence
attention_weighted_sentence.summary()
# Generate sentence-attention-weighted document scores
texts_in = Input(shape=(self.MAX_SENTENCE_COUNT, self.MAX_SENTENCE_LENGTH), dtype='int32')
attention_weighted_sentences = TimeDistributed(attention_weighted_sentence)(texts_in)
sentence_encoder = Bidirectional(
GRU(50, return_sequences=True, kernel_regularizer=l2_reg))(attention_weighted_sentences)
dense_transform_s = Dense(
100,
activation='relu',
name='dense_transform_s',
kernel_regularizer=l2_reg)(sentence_encoder)
attention_weighted_text = Attention(name='sentence_attention', regularizer=l2_reg)(dense_transform_s)
prediction = Dense(n_classes, activation='softmax')(attention_weighted_text)
model = Model(texts_in, prediction)
model.summary()
model.compile(#optimizer=RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0),
#optimizer=SGD(lr=0.01, decay=1e-6, nesterov=True),
optimizer=Adam(lr=0.001),
loss='categorical_crossentropy',
metrics=['acc'])
return model
def load_weights(self, saved_model_dir, saved_model_filename):
with CustomObjectScope({'Attention': Attention}):
self.model = load_model(os.path.join(saved_model_dir, saved_model_filename))
self.word_attention_model = self.model.get_layer('time_distributed_1').layer
tokenizer_path = os.path.join(
saved_model_dir, self._get_tokenizer_filename(saved_model_filename))
tokenizer_state = pickle.load(open(tokenizer_path, "rb" ))
self.tokenizer = tokenizer_state['tokenizer']
self.MAX_SENTENCE_COUNT = tokenizer_state['maxSentenceCount']
self.MAX_SENTENCE_LENGTH = tokenizer_state['maxSentenceLength']
self.VOCABULARY_SIZE = tokenizer_state['vocabularySize']
self._create_reverse_word_index()
def _get_tokenizer_filename(self, saved_model_filename):
return saved_model_filename + '.tokenizer'
def _fit_on_texts(self, texts):
self.tokenizer = Tokenizer(filters='"()*,-/;[\]^_`{|}~', oov_token='UNK');
all_sentences = []
max_sentence_count = 0
max_sentence_length = 0
for text in texts:
sentence_count = len(text)
if sentence_count > max_sentence_count:
max_sentence_count = sentence_count
for sentence in text:
sentence_length = len(sentence)
if sentence_length > max_sentence_length:
max_sentence_length = sentence_length
all_sentences.append(sentence)
self.MAX_SENTENCE_COUNT = min(max_sentence_count, 20)
self.MAX_SENTENCE_LENGTH = min(max_sentence_length, 50)
self.tokenizer.fit_on_texts(all_sentences)
self.VOCABULARY_SIZE = len(self.tokenizer.word_index) + 1
self._create_reverse_word_index()
def _create_reverse_word_index(self):
self.reverse_word_index = {value:key for key,value in self.tokenizer.word_index.items()}
def _encode_texts(self, texts):
encoded_texts = np.zeros((len(texts), self.MAX_SENTENCE_COUNT, self.MAX_SENTENCE_LENGTH))
for i, text in enumerate(texts):
encoded_text = np.array(pad_sequences(
self.tokenizer.texts_to_sequences(text),
maxlen=self.MAX_SENTENCE_LENGTH))[:self.MAX_SENTENCE_COUNT]
encoded_texts[i][-len(encoded_text):] = encoded_text
return encoded_texts
def _save_tokenizer_on_epoch_end(self, path, epoch):
if epoch == 0:
tokenizer_state = {
'tokenizer': self.tokenizer,
'maxSentenceCount': self.MAX_SENTENCE_COUNT,
'maxSentenceLength': self.MAX_SENTENCE_LENGTH,
'vocabularySize': self.VOCABULARY_SIZE
}
pickle.dump(tokenizer_state, open(path, "wb" ) )
def train(self, train_x, train_y,
batch_size=16, epochs=1,
embedding_dim=100,
embeddings_path=False,
saved_model_dir='saved_models', saved_model_filename=None,):
# fit tokenizer
self._fit_on_texts(train_x)
self.model = self._build_model(
n_classes=train_y.shape[-1],
embedding_dim=100,
embeddings_path=embeddings_path)
encoded_train_x = self._encode_texts(train_x)
callbacks = [
# EarlyStopping(
# monitor='acc',
# patience=2,
# ),
ReduceLROnPlateau(),
# keras.callbacks.TensorBoard(
# log_dir="logs/final/{}".format(datetime.datetime.now()),
# histogram_freq=1,
# write_graph=True,
# write_images=True
# )
LambdaCallback(
on_epoch_end=lambda epoch, logs: self._save_tokenizer_on_epoch_end(
os.path.join(saved_model_dir,
self._get_tokenizer_filename(saved_model_filename)), epoch))
]
if saved_model_filename:
callbacks.append(
ModelCheckpoint(
filepath=os.path.join(saved_model_dir, saved_model_filename),
monitor='val_acc',
save_best_only=True,
save_weights_only=False,
)
)
self.model.fit(x=encoded_train_x, y=train_y,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=callbacks,
validation_split=0.1,
shuffle=True)
def _encode_input(self, x, log=False):
x = np.array(x)
if not x.shape:
x = np.expand_dims(x, 0)
texts = np.array([normalize(text) for text in x])
return self._encode_texts(texts)
def predict(self, x):
encoded_x = self._encode_texts(x)
return self.model.predict(encoded_x)
def activation_maps(self, text, websafe=False):
normalized_text = normalize(text)
encoded_text = self._encode_input(text)[0]
# get word activations
hidden_word_encoding_out = Model(inputs=self.word_attention_model.input,
outputs=self.word_attention_model.get_layer('dense_transform_w').output)
hidden_word_encodings = hidden_word_encoding_out.predict(encoded_text)
word_context = self.word_attention_model.get_layer('word_attention').get_weights()[0]
u_wattention = encoded_text*np.exp(np.squeeze(np.dot(hidden_word_encodings, word_context)))
if websafe:
u_wattention = u_wattention.astype(float)
# generate word, activation pairs
nopad_encoded_text = encoded_text[-len(normalized_text):]
nopad_encoded_text = [list(filter(lambda x: x > 0, sentence)) for sentence in nopad_encoded_text]
reconstructed_texts = [[self.reverse_word_index[int(i)]
for i in sentence] for sentence in nopad_encoded_text]
nopad_wattention = u_wattention[-len(normalized_text):]
nopad_wattention = nopad_wattention/np.expand_dims(np.sum(nopad_wattention, -1), -1)
nopad_wattention = np.array([attention_seq[-len(sentence):]
for attention_seq, sentence in zip(nopad_wattention, nopad_encoded_text)])
word_activation_maps = []
for i, text in enumerate(reconstructed_texts):
word_activation_maps.append(list(zip(text, nopad_wattention[i])))
# get sentence activations
hidden_sentence_encoding_out = Model(inputs=self.model.input,
outputs=self.model.get_layer('dense_transform_s').output)
hidden_sentence_encodings = np.squeeze(
hidden_sentence_encoding_out.predict(np.expand_dims(encoded_text, 0)), 0)
sentence_context = self.model.get_layer('sentence_attention').get_weights()[0]
u_sattention = np.exp(np.squeeze(np.dot(hidden_sentence_encodings, sentence_context), -1))
if websafe:
u_sattention = u_sattention.astype(float)
nopad_sattention = u_sattention[-len(normalized_text):]
nopad_sattention = nopad_sattention/np.expand_dims(np.sum(nopad_sattention, -1), -1)
activation_map = list(zip(word_activation_maps, nopad_sattention))
return activation_map