-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvgg_backbone.py
74 lines (54 loc) · 2.29 KB
/
vgg_backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import numpy as np
import sys
import misc
class Conv2d(nn.Module):
def __init__(self, c_in, c_out, kernel_size=3, stride=1, padding=0, dilation=1, bias=False, activation=True):
super().__init__()
self.activation = activation
self.conv = nn.Conv2d(c_in, c_out, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias)
self.bn = nn.BatchNorm2d(c_out)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = x
out = self.relu(self.bn(self.conv(out))) if self.activation else self.conv(out)
return out
class CNNModel(nn.Module):
def __init__(self, n_classes):
super().__init__()
self.mpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv1_1 = Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.conv1_2 = Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.conv2_1 = Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.conv2_2 = Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False)
self.conv3_1 = Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.conv3_2 = Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.conv4_1 = Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.conv4_2 = Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False)
self.gap = nn.AdaptiveAvgPool2d(1)
self.flat = misc.Flatten()
def forward(self, x, stream='D'):
dict_fm = {}
out = self.conv1_1(x)
out = self.conv1_2(out)
key = 'feature_'+stream+'_blk1'
dict_fm[key] = out
out = self.conv2_1(out)
out = self.conv2_2(out)
out = self.mpool(out)
key = 'feature_'+stream+'_blk2'
dict_fm[key] = out
out = self.conv3_1(out)
out = self.conv3_2(out)
out3 = out
out = self.mpool(out)
key = 'feature_'+stream+'_blk3'
dict_fm[key] = out
out = self.conv4_1(out)
out = self.conv4_2(out)
key = 'feature_'+stream+'_blk4'
dict_fm[key] = out
return out, out3, dict_fm