-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.R
49 lines (45 loc) · 2.08 KB
/
learning.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
load("Train.RData"); source("predict_function.R")
learning = function(bank = "Chase",
card = "Freedom",
Score = 700,
Age_month = 24,
Income = "$100,000 - $125,000",
New3 = 0,
New6 = 0,
New12 = 0
){
# take income midpoint
convert = read.csv("income.csv")
Income.mid = convert$Convert[convert$Stated.Income == Income]
Data1 = sqldf(paste(
"select * from credit where Bank = '", bank, "'",
sep = ""
))
Data = clean(Data1)
assign("Data", Data, envir = .GlobalEnv)
# get models
ModelI = Instant_model[[bank]]$model
ModelF = Final_model[[bank]]$model
if (is.null(ModelI)){
pred_I = list(msg_out = "Not enough data for this bank")
pred_F = list(msg_out = "Not enough data for this bank")
} else {
# predict Instant approval
method = which.max(Accuracies[bank, c(1, 3, 5, 7)])
newdata = data.frame(Card.Name = card, Instant = 0, Final = 0, Recon = 0, Score = Score, Age_month = Age_month, Income.mid = Income.mid, New3 = New3, New6 = New6, New12 = New12)
pred_I = predictI(ModelI, newdata = newdata, method)
# predict FInal approval
method = which.max(Accuracies[bank, c(2, 4, 6, 8)])
newdata = data.frame(Card.Name = card, Instant = pred_I$pred, Recon = 1, Score = Score, Age_month = Age_month, Income.mid = Income.mid, New3 = New3, New6 = New6, New12 = New12)
pred_F = predictF(ModelF, newdata = newdata, method)
}
# output
I.out = pred_I$msg_out
F.out = pred_F$msg_out
return(list(I.out = I.out, F.out = F.out,
KNN.I.accuracy = Accuracies[bank, "KNN.I"], KNN.F.accuracy = Accuracies[bank, "KNN.F"],
LR.I.accuracy = Accuracies[bank, "logit.I"], LR.F.accuracy = Accuracies[bank, "logit.F"],
RF.I.accuracy = Accuracies[bank, "RF.I"], RF.F.accuracy = Accuracies[bank, "RF.F"],
NN.I.accuracy = Accuracies[bank, "NN.I"], NN.F.accuracy = Accuracies[bank, "NN.F"]
))
}