-
Notifications
You must be signed in to change notification settings - Fork 1
/
demo_NIDS.m
207 lines (178 loc) · 5.32 KB
/
demo_NIDS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Decentralized Consensus Optimization Problem (NIDS)
%
%
% F(x) = 1/2||Ax-a||^2; G(x) = mu2 ||.||_1; H(x) = iota_0;
% A = (I-W)^{1/2}
%
% Contact:
% Ming Yan yanm @ math.msu.edu
% Downloadable from https://github.com/mingyan08/PD3O
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function demo_NIDS
close all
clear
clc;
global n m p M y_ori lam
addpath('fcns','data','output')
n = 40;
m = 3;
p = 200;
L = n;
per = 4/L;
% may changed in the following function
min_mu = 0.1; % set the smallest strongly convex parameter mu in S
max_Lips = 1; % set the Lipschitz constant
% lam is the parameter in function R
% [M, x_ori, y_ori, lam, W] = generateAll(m, p, n, per,...
% 'withNonsmoothR', min_mu,max_Lips);
W = generateW(L, per);
[M, x_ori, y_ori, lam] = generateS(m, p, n,...
'withNonsmoothR', min_mu, max_Lips);
[~, lambdan] = eigW(W); % find the smallest eigenvalue of W
lambda_max = 1/(1-lambdan);
% set parameters
x0 = zeros(n,p);
x_star = x_ori; % true solution
x_star_norm = norm(x_star, 'fro');
% Set the parameter for the solver
W2 = eye(n) - W;
[U,S,V] = svd(W2);
W = U * sqrt(S) * V';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start using the PrimalDual class
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
obj = PrimalDual; % using the class PrimalDual
%% Define all its functions:
% Create handles to functions F, G, H, A:
obj.myF = @(x) feval(@funS, x);
obj.myG = @(x) feval(@funR, x);
obj.myA = @(x) W * x;
% Create handles to adjoint/gradient/prox:
obj.myGradF = @(x) feval(@funGradS, x);
obj.myProxG = @(x,t) feval(@funProxR, x, t);
obj.myProxH = @(y, t) zeros(size(y));
obj.myAdjA = @(y) W' * y;
obj.myHA = @(y) 0;
%% Define the parameters
obj.gamma = 1; % two parameters for the primal-dual algorithms
obj.lambda = 0.5 * lambda_max; % we will choose different gammas in this example
%% Define the parameters
obj.input.iter = 10000; % the number of iterations
obj.input.x = x0;
obj.input.s = x0;
obj.input.x_min = x_star;
load x_PD3O_NIDS.mat
obj.input.s_min = s_PD3O;
%% Run the primal-dual codes
% PD3O %%%
j = 1;
tic
[x_PD3O, s_PD3O, E_PD3O, out_PD3O] = obj.minimize('PD3O', 1);
time(j) = toc;
% PDFP %%%
j = 2;
tic
[x_PDFP, s_PDFP, E_PDFP, out_PDFP] = obj.minimize('PDFP', 1);
time(j) = toc;
% CV %%%
j = 3;
tic
[x_CV, s_CV, E_CV, out_CV] = obj.minimize('CV', 1);
time(j) = toc;
%% choose a different gamma
obj.gamma = 1.5;
% PD3O %%%
j = 4;
tic
[x_PD3O2, s_PD3O2, E_PD3O2, out_PD3O2] = obj.minimize('PD3O', 1);
time(j) = toc;
% PDFP %%%
j = 5;
tic
[x_PDFP2, s_PDFP2, E_PDFP2, out_PDFP2] = obj.minimize('PDFP', 1);
time(j) = toc;
%% choose another gamma
obj.gamma = 2.0;
% PD3O %%%
j = 7;
tic
[x_PD3O3, s_PD3O3, E_PD3O3, out_PD3O3] = obj.minimize('PD3O', 1);
time(j) = toc;
% PDFP %%%
j = 8;
tic
[x_PDFP3, s_PDFP3, E_PDFP3, out_PDFP3] = obj.minimize('PDFP', 1);
time(j) = toc;
%% Run the primal-dual codes with different settings
obj.gamma = 1.9; % two parameters for the primal-dual algorithms
obj.lambda = 0.05 * lambda_max; % we will choose different lambda in this example
% PD3O %%%
j = 1;
tic
[x_PD3O4, s_PD3O4, E_PD3O4, out_PD3O4] = obj.minimize('PD3O', 1);
time2(j) = toc;
% PDFP %%%
j = 2;
tic
[x_PDFP4, s_PDFP4, E_PDFP4, out_PDFP4] = obj.minimize('PDFP', 1);
time2(j) = toc;
% CV %%%
j = 3;
tic
[x_CV4, s_CV4, E_CV4, out_CV4] = obj.minimize('CV', 1);
time2(j) = toc;
%% choose a different gamma
obj.lambda = 0.5 * lambda_max;
% PD3O %%%
j = 4;
tic
[x_PD3O5, s_PD3O5, E_PD3O5, out_PD3O5] = obj.minimize('PD3O', 1);
time2(j) = toc;
% PDFP %%%
j = 5;
tic
[x_PDFP5, s_PDFP5, E_PDFP5, out_PDFP5] = obj.minimize('PDFP', 1);
time2(j) = toc;
%% choose another gamma
obj.lambda = 1.0 * lambda_max;
% PD3O %%%
j = 7;
tic
[x_PD3O6, s_PD3O6, E_PD3O6, out_PD3O6] = obj.minimize('PD3O', 1);
time2(j) = toc;
% PDFP %%%
j = 8;
tic
[x_PDFP6, s_PDFP6, E_PDFP6, out_PDFP6] = obj.minimize('PDFP', 1);
time2(j) = toc;
save data_NIDS.mat out_* E_* x_* s_*
end
function a = funGradS(x)
global n p M y_ori
a = zeros(n, p);
for j = 1:n
a(j,:) = (M(:,:,j)' * (M(:,:,j) * (x(j,:))' - y_ori(:,j)))';
end
end
function a = funR(x)
global n lam
a = 0;
for j = 1:n
a = a + lam * norm(x(j,:), 1);
end
end
function a = funS(x)
global n M y_ori
a = 0;
for j = 1:n
a = a + 0.5 * sum((M(:,:,j) * (x(j,:))' - y_ori(:,j)).^2);
end
end
function a = funProxR(x,t)
global n p lam
a = zeros(n, p);
for j = 1:n
a(j,:) = (wthresh(x(j,:), 's', t*lam))';
end
end