Skip to content

Latest commit

 

History

History
27 lines (25 loc) · 1013 Bytes

Fourier Cosine Series.md

File metadata and controls

27 lines (25 loc) · 1013 Bytes

Because $\cos(mt)$ is an [[Even Function]] we can write any even function as $$ \mathbb{E}(t) = \frac{1}{\pi} \sum^{\infty}{m=0} \mathbb{E}{m}\cos(mt) $$ where the set of coefficients of $\mathbb{E}_m$ define the series and $\mathbb{E}(t)$ is over $(-\pi, \pi)$ This function only sometimes works, but we should assume it will work generally in Physics

Finding the Coefficients

$$ \mathbb{E}(t) = \frac{1}{\pi} \sum^{\infty}{m'=0} \mathbb{E}{m'}\cos(m't) $$ $$ \int^{\pi}{-\pi} \mathbb{E}(t) \cos(mt) dt = \frac{1}{\pi} \sum^{\infty}{m'=0} \int^\pi_{-\pi}\mathbb{E}{m'}\cos(m't) \cos(mt) dt $$ Using [[Kronecker Delta Function]], simplify the integral $$ \int^{\pi}{-\pi} \mathbb{E}(t) \cos(mt) dt = \frac{1}{\pi} \sum^{\infty}{m'=0} \mathbb{E}{m'} \pi \delta_{m',m} $$ The sum only contributes once when $m' = m$, giving one $\pi$ $$ \int^{\pi}{-\pi} \mathbb{E}(t) \cos(mt) dt = \frac{1}{\pi} \mathbb{E}{m} \pi $$ $$ \implies \mathbb{E}{m} = \int^{\pi}{-\pi} \mathbb{E}(t) \cos(mt) dt $$