-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__main__.py
284 lines (220 loc) · 10.9 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# %%
import json
import logging
import multiprocessing
import os
import random
import time
import natsort
import numpy as np
import pandas as pd
from scipy.signal import convolve2d
from skimage import measure as skimage_label
import src.utils.fileio as fileio
import src.utils.utils as SL
from src import settings
angle_bin = settings.ANGLE_BIN
distance_bin = settings.DISTANCE_BIN
start = settings.START
timecut = settings.TIMECUT
exptime = settings.EXP_DURATION
n = settings.RANDOM_GROUP_SIZE
nrand1 = settings.N_RANDOM_1
nrand2 = settings.N_RANDOM_2
LOGS_DIR = settings.LOGS_DIR
os.makedirs(LOGS_DIR, exist_ok=True)
log_file_path = os.path.join(LOGS_DIR, "runtime_log.txt")
logger = logging.getLogger("runtime_logger")
logger.setLevel(logging.INFO)
if logger.hasHandlers():
logger.handlers.clear()
file_handler = logging.FileHandler(log_file_path)
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
angle, distance, time_arr = np.zeros((500, 1)), np.zeros((500, 1)), np.zeros((500, 1))
normalization = json.load(open(settings.NROMALIZATION))
pxpermm = json.load(open(settings.PXPERMM))
treatment = fileio.load_multiple_folders(settings.TRACKINGS)
sorted_keys = natsort.natsorted(treatment.keys())
treatment = {k: treatment[k] for k in sorted_keys}
CRITERIA_SAVE_PATH = os.path.join(settings.OUTPUT_DIR, f'{settings.TREATMENT}_criteria.csv')
treatment_name = settings.TREATMENT
if os.path.exists(CRITERIA_SAVE_PATH):
criteria_df = pd.read_csv(CRITERIA_SAVE_PATH, index_col=0)
ni = len(criteria_df)
logger.info(f'{treatment_name} - Continue from: {ni}')
else:
criteria_df = pd.DataFrame(columns=["distance", "angle", "time"])
ni = 0
logger.info(f'{treatment_name} - Start from 0')
while len(criteria_df) < 500:
try:
total_time = time.time()
temp_ind = random.sample(range(len(treatment)), settings.RANDOM_GROUP_SIZE)
pick_random_groups = {list(treatment.keys())[i]: list(treatment.values())[i] for i in temp_ind}
treatment_items = treatment.items()
with multiprocessing.Pool() as pool:
all_hists = pool.starmap(SL.process_norm_group, treatment_items)
superN = np.sum(all_hists, axis=0)
pseudo_N = SL.boot_pseudo_fly_space(treatment, temp_ind)
N2 = (superN / np.sum(superN)) - (pseudo_N / np.sum(pseudo_N))
falloff = np.arange(1, N2.shape[0] + 1).astype(float) ** -1
N2 = N2 * np.tile(falloff, (N2.shape[1], 1)).T
N2[N2 <= np.percentile(N2[N2 > 0], 95)] = 0
C = {}
C[0] = np.arange(0, settings.DISTANCE_MAX, settings.DISTANCE_BIN)
C[1] = np.arange(-180, 181, settings.ANGLE_BIN)
a, b = np.where(N2 > 0)
tempangle, tempdistance = np.max(np.abs(C[1][b - 1])), C[0][np.max(a - 1)]
h = np.array([
[0.0181, 0.0492, 0.0492, 0.0181], [0.0492, 0.1336, 0.1336, 0.0492],
[0.0492, 0.1336, 0.1336, 0.0492], [0.0181, 0.0492, 0.0492, 0.0181],
])
h /= np.sum(h)
N2 = convolve2d(N2, h, mode="same")
N2_int = np.where(N2 > 0, 1, N2)
labeled_image, num_labels = skimage_label.label(N2_int, connectivity=2, return_num=True)
CC = {"Connectivity": 8}
CC["ImageSize "] = labeled_image.shape
CC["NumObjects"] = num_labels
CC["PixelIdxList"] = [np.where(labeled_image == label_num) for label_num in range(1, num_labels + 1)]
bcenter = np.where(C[0] < 2)[0][-5:]
acenter1, acenter2 = np.where(C[1] == -angle_bin * 2)[0][0], np.where(C[1] == angle_bin * 2)[0][0]
test = np.zeros_like(N2)
test[bcenter[0]: bcenter[-1] + 1, acenter1: acenter2 + 1] = 1
G = np.where(test != 0)
for i in range(CC["NumObjects"]):
CC_pixel_idx_list = CC["PixelIdxList"][i]
CC_set = set(zip(*CC_pixel_idx_list))
G_set = set(zip(*G))
if len(CC_set & G_set) == 0:
N2[CC["PixelIdxList"][i]] = 0
if not np.any(N2 > 0):
continue
N2[N2 < np.percentile(N2[N2 > 0], 75)] = 0
N2_int = np.where(N2 > 0, 1, N2)
labeled_image, num_labels = skimage_label.label(N2_int, connectivity=2, return_num=True)
CC["ImageSize "] = labeled_image.shape
CC["NumObjects"] = num_labels
CC["PixelIdxList"] = [np.where(labeled_image == label_num) for label_num in range(1, num_labels + 1)]
num_pixels = np.array([len(pixel_idx) for pixel_idx in CC["PixelIdxList"]])
idx = np.where(num_pixels < 5)[0]
N3 = np.copy(N2)
for i in range(CC["NumObjects"]):
CC_pixel_idx_list = CC["PixelIdxList"][i]
CC_set = set(zip(*CC_pixel_idx_list))
G_set = set(zip(*G))
intersection = CC_set & G_set
if len(intersection) == 0:
N2[CC["PixelIdxList"][i]] = 0
a, b = np.where(N2 > 0)
if len(a) == 0:
N2 = np.copy(N3)
for i in range(len(idx)):
N2[CC["PixelIdxList"][idx[i]]] = 0
a, b = np.where(N2 > 0)
if not len(a) or not len(b):
continue
tempangle, tempdistance = np.max(np.abs(C[1][b])), C[0][np.max(a)]
N2 = superN / n - pseudo_N / nrand2
meanN2 = np.mean(N2)
storeN, storeT = np.zeros((len(C[0]) - 1, len(C[1]))), np.zeros((len(np.arange(0, 30 * 60, 0.05)), nrand1))
keepitgoing = True
if tempangle.size != 0 and tempdistance is not None:
storeN = storeN + (superN / np.sum(superN) - pseudo_N / np.sum(pseudo_N)) / nrand1
while keepitgoing:
temp = N2[
np.where(C[0] == 1)[0][0]: np.where(C[0] == tempdistance)[0][0] + 1,
np.where(C[1] == -tempangle)[0][0]: np.where(C[1] == tempangle)[0][0] + 1
]
tempmean = temp.mean()
update = 0
tempang = N2[
np.where((C[0] == 1) | (C[0] == tempdistance))[0][0]: np.where(C[0] == tempdistance)[0][0] + 1,
np.where((C[1] >= -tempangle - angle_bin) & (C[1] <= tempangle + angle_bin))[0][0]:
np.where((C[1] >= -tempangle - angle_bin) & (C[1] <= tempangle + angle_bin))[0][-1] + 1
]
tempdist = N2[
np.where((C[0] == 1))[0][0]: np.where((C[0] == tempdistance + distance_bin))[0][0] + 1,
np.where((C[1] == -tempangle))[0][0]: np.where((C[1] == tempangle))[0][0] + 1
]
tempangdist = N2[
np.where((C[0] == 1))[0][0]: np.where((C[0] == tempdistance + distance_bin))[0][0] + 1,
np.where((C[1] == -tempangle - angle_bin))[0][0]:np.where((C[1] == tempangle + angle_bin))[0][0] + 1
]
if np.mean(tempangdist) > np.mean(tempang) and np.mean(tempdist):
if np.prod(tempangdist.shape) * meanN2 > np.sum(tempang):
update = 3
tempangle += angle_bin
tempdistance += distance_bin
elif np.mean(tempang) > np.mean(tempdist):
if np.prod(tempang.shape) * meanN2 > np.sum(tempang) and np.mean(tempang) > tempmean:
update = 1
tempangle += angle_bin
else:
if np.prod(tempang.shape) * meanN2 < np.sum(tempdist) and np.mean(tempdist) > tempmean:
update = 2
tempdistance += distance_bin
if update not in [1, 2, 3]:
keepitgoing = False
angle[ni], distance[ni] = tempangle, tempdistance
# Time
pick_random_groups = {list(treatment.keys())[i]: list(treatment.values())[i] for i in temp_ind}
args = [(list(pick_random_groups.values())[i], tempangle, tempdistance) for i in range(0, len(temp_ind))]
with multiprocessing.Pool() as pool:
tstrain = list(pool.map(SL.process_group, args))
ptstrain = SL.boot_pseudo_times(treatment, nrand2, temp_ind, tempangle, tempdistance, start, exptime)
M = np.arange(0, 30 * 60 + 0.05, 0.05)
N = np.zeros((len(ptstrain), len(M) - 1))
for i in range(len(ptstrain)):
temp = np.histogram(ptstrain[i][:-1], bins=M)[0]
temps = temp / np.sum(temp)
temps = np.cumsum(temps[::-1])[::-1]
N[i, :] = temps
N[np.isnan(N)] = 0
PN, N = np.sum(N, axis=0), np.zeros((len(tstrain), len(M) - 1))
for i in range(len(tstrain)):
temp = np.histogram(tstrain[i][:-1], bins=M)[0]
temps = temp / np.sum(temp)
temps = np.cumsum(temps[::-1])[::-1]
N[i, :] = temps
N[np.isnan(N)] = 0
N = np.sum(N, axis=0)
temp = (N / n) - (PN / nrand2)
ftemp = np.where(temp == np.max(temp[: round(len(M) / 2)]))[0][0]
try:
keepgoing = True
while keepgoing:
if np.mean(temp[:ftemp]) < np.mean(temp[: ftemp + 1]):
ftemp += 1
else:
keepgoing = False
if ftemp >= len(temp):
ftemp -= 1
keepgoing = False
storeT[:, ni] = temp
ftemp = np.where(N * 0.5 < N[ftemp])[0]
if len(ftemp) > 0 and ftemp[0] != 0:
time_arr[ni] = M[ftemp[0]]
# print(f"{ni} distance {distance[ni]} angle {angle[ni]} time {time_arr[ni]}")
d_df = pd.DataFrame([{"distance": distance[ni][0], "angle": angle[ni][0], "time": time_arr[ni][0]}])
criteria_df = pd.concat([criteria_df, d_df], ignore_index=True)
criteria_df.to_csv(CRITERIA_SAVE_PATH)
times_path = f"/srv/milky/drosophila-datasets/{settings.TREATMENT}"
os.makedirs(times_path, exist_ok=True)
np.save(os.path.join(times_path, f"{ni}_real_array.npy"), np.concatenate(tstrain))
np.save(os.path.join(times_path, f"{ni}_pseudo_array.npy"), np.concatenate(ptstrain))
logger.info(f"{treatment_name} - {ni}: {time.time() - total_time}")
# sys.exit()
ni += 1
except Exception:
# print(e)
storeN = storeN - (superN / np.sum(superN) - pseudo_N / np.sum(pseudo_N)) / nrand1
distance[ni], angle[ni], time_arr[ni] = 0, 0, 0
except Exception:
# print(e)
logger.info(f"{treatment_name} - {ni}: FAIL {time.time() - total_time}")
# storeN = storeN - (superN / np.sum(superN) - pseudo_N / np.sum(pseudo_N)) / nrand1
distance[ni], angle[ni], time_arr[ni] = 0, 0, 0