-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_agent.py
171 lines (139 loc) · 6.9 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import random
import copy
from collections import namedtuple, deque
from model import Actor, Critic
LR_ACTOR = 1e-4 # Learning rate of the actor
LR_CRITIC = 1e-3 # Learning rate of the critic
WEIGHT_DECAY = 0 # L2 weight decay
TAU = 8e-2 # For soft update of target parameters
GAMMA = 0.99 # Discount Factor
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class OUNoise():
"""Ornstein-Uhlenbeck process"""
def __init__(self, size, random_seed, mu = 0,theta = 0.15, sigma = 0.1):
"""Initialize parameters and noise process."""
self.size = size
self.random_seed = random.seed(random_seed)
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.random.standard_normal(self.size)
self.state = x + dx
return self.state
class DDPG_Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, num_agents, index, random_seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
num_agents (int): the number of agents
index (int): an index for each agent
random_seed (int): random seed
"""
self.action_size = action_size
self.state_size = state_size
self.index = index
self.random_seed = random.seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr = LR_ACTOR)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size, num_agents, random_seed).to(device)
self.critic_target = Critic(state_size, action_size, num_agents, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr = LR_CRITIC, weight_decay = WEIGHT_DECAY)
self.hard_update(self.actor_target, self.actor_local)
self.hard_update(self.critic_target, self.critic_local)
self.noise = OUNoise(action_size, random_seed)
self.timesteps = 0
def hard_update(self,target,source):
"""Hard update model parameters.
θ_target = θ_local
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
"""
for target_params,source_params in zip(target.parameters(),source.parameters()):
target_params.data.copy_(source_params.data)
def act(self, state, add_noise = True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise:
action += self.noise.sample()
return np.clip(action,-1,1)
def reset(self):
self.noise.reset()
def learn(self,experiences, num_agents):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(next_state) -> action
critic_target(next_state, next_action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
num_agents (list): number of agents
"""
states, actions, rewards, next_states, dones = experiences
whole_states = torch.cat(states, dim=1).to(device)
whole_next_states = torch.cat(next_states, dim=1).to(device)
whole_actions = torch.cat(actions, dim=1).to(device)
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions for each agent
next_actions = [actions[index].clone() for index in range(num_agents)]
next_actions[self.index] = self.actor_target(next_states[self.index])
whole_next_actions = torch.cat(next_actions, dim=1).to(device)
# Get predicted Q values from target models
Q_target_next = self.critic_target(whole_next_states,whole_next_actions)
# Compute Q targets for current states (y_i)
Q_target = rewards[self.index] + GAMMA * Q_target_next *(1-dones[self.index])
# Compute critic loss
Q_expected = self.critic_local(whole_states,whole_actions)
critic_loss = F.mse_loss(Q_expected,Q_target)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss for each agent
actions_pred = [actions[index].clone() for index in range(num_agents)]
actions_pred[self.index] = self.actor_local(states[self.index])
whole_actions_pred = torch.cat(actions_pred, dim=1).to(device)
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss = -self.critic_local(whole_states, whole_actions_pred).mean()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ * θ_local + (1 - τ) * θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_params,local_params in zip(target_model.parameters(),local_model.parameters()):
target_params.data.copy_(tau * local_params.data + (1.0 - tau) * target_params.data)