-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppif_utils.py
73 lines (63 loc) · 3.26 KB
/
ppif_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from enum import Enum
import numpy as np
import pyppif
class LiftingAlgorithms(Enum):
RAND = 0 # Random lifting.
ADV = 1 # Adversarial lifting.
HYB = 2 # Hybrid lifting (half random, half adversarial).
SUBADV = 3 # Adversarial lifting with sub-databases.
SUBHYB = 4 # Hybrid lifting with sub-databases.
def lifting_config_to_str(lifting_config):
if lifting_config is None:
return f'NONE'
lifting_alg = lifting_config['alg']
lifting_dim = lifting_config['dim']
if lifting_alg == LiftingAlgorithms.RAND:
return f'RAND. - dim. {lifting_dim}'
elif lifting_alg == LiftingAlgorithms.ADV:
return f'ADV. - dim. {lifting_dim}'
elif lifting_alg == LiftingAlgorithms.HYB:
return f'HYB. - dim. {lifting_dim}'
elif lifting_alg == LiftingAlgorithms.SUBADV:
num_sub_databases = lifting_config['num_sub_databases']
return f'SUB-ADV. - dim. {lifting_dim} ({num_sub_databases})'
elif lifting_alg == LiftingAlgorithms.SUBHYB:
num_sub_databases = lifting_config['num_sub_databases']
return f'SUB-HYB. - dim. {lifting_dim} ({num_sub_databases})'
else:
raise NotImplementedError(lifting_alg)
def select_lifting_function(lifting_config, descriptor):
lifting_alg = lifting_config['alg']
lifting_dim = lifting_config['dim']
if lifting_alg == LiftingAlgorithms.RAND:
def lifting_function(descriptor, seed=0):
return pyppif.random_lifting(descriptor, lifting_dim, seed=seed)
elif lifting_alg == LiftingAlgorithms.ADV:
database = np.load(f'databases/{descriptor}.npy')
def lifting_function(descriptor, seed=0):
return pyppif.adversarial_lifting(descriptor, lifting_dim, database, num_sub_databases=1, seed=seed)
elif lifting_alg == LiftingAlgorithms.HYB:
database = np.load(f'databases/{descriptor}.npy')
def lifting_function(descriptor, seed=0):
return pyppif.hybrid_lifting(descriptor, lifting_dim, database, num_sub_databases=1, seed=seed)
elif lifting_alg == LiftingAlgorithms.SUBADV:
database = np.load(f'databases/{descriptor}.npy')
num_sub_databases = lifting_config['num_sub_databases']
def lifting_function(descriptor, seed=0):
return pyppif.adversarial_lifting(descriptor, lifting_dim, database, num_sub_databases=num_sub_databases, seed=seed)
elif lifting_alg == LiftingAlgorithms.SUBHYB:
database = np.load(f'databases/{descriptor}.npy')
num_sub_databases = lifting_config['num_sub_databases']
def lifting_function(descriptor, seed=0):
return pyppif.hybrid_lifting(descriptor, lifting_dim, database, num_sub_databases=num_sub_databases, seed=seed)
else:
raise NotImplementedError(lifting_alg)
return lifting_function
def subspace_to_subspace_exhaustive_matcher(descriptors1, descriptors2, subspace_dim):
if subspace_dim == 2 or subspace_dim == 4:
try:
import pyppifcuda
return pyppifcuda.subspace_to_subspace_exhaustive_matcher(descriptors1, descriptors2)
except ModuleNotFoundError:
return pyppif.subspace_to_subspace_exhaustive_matcher(descriptors1, descriptors2)
return pyppif.subspace_to_subspace_exhaustive_matcher(descriptors1, descriptors2)