Skip to content

Commit

Permalink
* moved tom to its own folder.
Browse files Browse the repository at this point in the history
* updated notebooks for pypi
* updated readme for pypi
* fixed tom functions missing TOM import
  • Loading branch information
m-kovalsky committed Jun 16, 2024
1 parent 4b833b1 commit 1298909
Show file tree
Hide file tree
Showing 31 changed files with 403 additions and 579 deletions.
197 changes: 14 additions & 183 deletions README.md

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion notebooks/Migration to Direct Lake.ipynb

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion notebooks/Model Optimization.ipynb
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"cells":[{"cell_type":"markdown","id":"5c27dfd1-4fe0-4a97-92e6-ddf78889aa93","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Install the latest .whl package\n","\n","Check [here](https://github.com/microsoft/semantic-link-labs) to see the latest version.\n","\n","Check [here](https://github.com/microsoft/semantic-link-labs/releases) for the library's release notes."]},{"cell_type":"code","execution_count":null,"id":"d5cae9db-cef9-48a8-a351-9c5fcc99645c","metadata":{"jupyter":{"outputs_hidden":true,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%pip install \"https://raw.githubusercontent.com/microsoft/semantic-link-labs/main/semantic-link-labs-0.4.1-py3-none-any.whl\""]},{"cell_type":"markdown","id":"cd8de5a0","metadata":{},"source":["### Import the library"]},{"cell_type":"code","execution_count":null,"id":"5cc6eedf","metadata":{},"outputs":[],"source":["import sempy_labs as labs\n","from sempy_labs._tom import connect_semantic_model\n","from sempy_labs import lakehouse as lake\n","from sempy_labs import directlake"]},{"cell_type":"markdown","id":"5a3fe6e8-b8aa-4447-812b-7931831e07fe","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Vertipaq Analyzer"]},{"cell_type":"code","execution_count":null,"id":"cde43b47-4ecc-46ae-9125-9674819c7eab","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["labs.vertipaq_analyzer(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"419a348f","metadata":{},"source":["Export the Vertipaq Analyzer results to a .zip file in your lakehouse"]},{"cell_type":"code","execution_count":null,"id":"8aa239b3","metadata":{},"outputs":[],"source":["labs.vertipaq_analyzer(dataset = '', workspace = None, export = 'zip')"]},{"cell_type":"markdown","id":"2dce0f4f","metadata":{},"source":["Export the Vertipaq Analyzer results to append to delta tables in your lakehouse."]},{"cell_type":"code","execution_count":null,"id":"aef93fc8","metadata":{},"outputs":[],"source":["labs.vertipaq_analyzer(dataset = '', workspace = None, export = 'table')"]},{"cell_type":"markdown","id":"1c62a802","metadata":{},"source":["Visualize the contents of an exported Vertipaq Analzyer .zip file."]},{"cell_type":"code","execution_count":null,"id":"9e349954","metadata":{},"outputs":[],"source":["labs.import_vertipaq_analyzer(folder_path = '', file_name = '')"]},{"cell_type":"markdown","id":"456ce0ff","metadata":{},"source":["### Best Practice Analzyer\n","\n","This runs the [standard rules](https://github.com/microsoft/Analysis-Services/tree/master/BestPracticeRules) for semantic models posted on Microsoft's GitHub."]},{"cell_type":"code","execution_count":null,"id":"0a3616b5-566e-414e-a225-fb850d6418dc","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["labs.run_model_bpa(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"6fb32a58","metadata":{},"source":["This runs the rules and exports the results to a table in your lakehouse."]},{"cell_type":"code","execution_count":null,"id":"677851c3","metadata":{},"outputs":[],"source":["labs.run_model_bpa(dataset = '', workspace = None, export = True)"]},{"cell_type":"markdown","id":"8126a1a1","metadata":{},"source":["### Direct Lake\n","\n","Check if any lakehouse tables will hit the [Direct Lake guardrails](https://learn.microsoft.com/power-bi/enterprise/directlake-overview#fallback)."]},{"cell_type":"code","execution_count":null,"id":"e7397b15","metadata":{},"outputs":[],"source":["lake.get_lakehouse_tables(lakehouse = None, workspace = None, extended = True, count_rows = False)"]},{"cell_type":"code","execution_count":null,"id":"b30074cf","metadata":{},"outputs":[],"source":["lake.get_lakehouse_tables(lakehouse = None, workspace = None, extended = True, count_rows = False, export = True)"]},{"cell_type":"markdown","id":"99b84f2b","metadata":{},"source":["Check if any tables in a Direct Lake semantic model will fall back to DirectQuery."]},{"cell_type":"code","execution_count":null,"id":"f837be58","metadata":{},"outputs":[],"source":["directlake.check_fallback_reason(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"8f6df93e","metadata":{},"source":["### [OPTIMIZE](https://docs.delta.io/latest/optimizations-oss.html) your lakehouse delta tables."]},{"cell_type":"code","execution_count":null,"id":"e0262c9e","metadata":{},"outputs":[],"source":["lake.optimize_lakehouse_tables(tables = ['', ''], lakehouse = None, workspace = None)"]},{"cell_type":"markdown","id":"0091d6a0","metadata":{},"source":["Refresh/reframe your Direct Lake semantic model and restore the columns which were in memory prior to the refresh."]},{"cell_type":"code","execution_count":null,"id":"77eef082","metadata":{},"outputs":[],"source":["directlake.warm_direct_lake_cache_isresident(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"dae1a210","metadata":{},"source":["Ensure a warm cache for your users by putting the columns of a Direct Lake semantic model into memory based on the contents of a [perspective](https://learn.microsoft.com/analysis-services/tabular-models/perspectives-ssas-tabular?view=asallproducts-allversions).\n","\n","Perspectives can be created either in [Tabular Editor 3](https://github.com/TabularEditor/TabularEditor3/releases/latest) or in [Tabular Editor 2](https://github.com/TabularEditor/TabularEditor/releases/latest) using the [Perspective Editor](https://www.elegantbi.com/post/perspectiveeditor)."]},{"cell_type":"code","execution_count":null,"id":"43297001","metadata":{},"outputs":[],"source":["directlake.warm_direct_lake_cache_perspective(dataset = '', workspace = None, perspective = '', add_dependencies = True)"]}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python"},"nteract":{"version":"nteract-front-end@1.0.0"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5}
{"cells":[{"cell_type":"markdown","id":"5c27dfd1-4fe0-4a97-92e6-ddf78889aa93","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Install the latest .whl package\n","\n","Check [here](https://pypi.org/project/semantic-link-labs/) to see the latest version."]},{"cell_type":"code","execution_count":null,"id":"d5cae9db-cef9-48a8-a351-9c5fcc99645c","metadata":{"jupyter":{"outputs_hidden":true,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%pip install semantic-link-labs"]},{"cell_type":"markdown","id":"cd8de5a0","metadata":{},"source":["### Import the library"]},{"cell_type":"code","execution_count":null,"id":"5cc6eedf","metadata":{},"outputs":[],"source":["import sempy_labs as labs\n","from sempy_labs import lakehouse as lake\n","from sempy_labs import directlake"]},{"cell_type":"markdown","id":"5a3fe6e8-b8aa-4447-812b-7931831e07fe","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Vertipaq Analyzer"]},{"cell_type":"code","execution_count":null,"id":"cde43b47-4ecc-46ae-9125-9674819c7eab","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["labs.vertipaq_analyzer(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"419a348f","metadata":{},"source":["Export the Vertipaq Analyzer results to a .zip file in your lakehouse"]},{"cell_type":"code","execution_count":null,"id":"8aa239b3","metadata":{},"outputs":[],"source":["labs.vertipaq_analyzer(dataset = '', workspace = None, export = 'zip')"]},{"cell_type":"markdown","id":"2dce0f4f","metadata":{},"source":["Export the Vertipaq Analyzer results to append to delta tables in your lakehouse."]},{"cell_type":"code","execution_count":null,"id":"aef93fc8","metadata":{},"outputs":[],"source":["labs.vertipaq_analyzer(dataset = '', workspace = None, export = 'table')"]},{"cell_type":"markdown","id":"1c62a802","metadata":{},"source":["Visualize the contents of an exported Vertipaq Analzyer .zip file."]},{"cell_type":"code","execution_count":null,"id":"9e349954","metadata":{},"outputs":[],"source":["labs.import_vertipaq_analyzer(folder_path = '', file_name = '')"]},{"cell_type":"markdown","id":"456ce0ff","metadata":{},"source":["### Best Practice Analzyer\n","\n","This runs the [standard rules](https://github.com/microsoft/Analysis-Services/tree/master/BestPracticeRules) for semantic models posted on Microsoft's GitHub."]},{"cell_type":"code","execution_count":null,"id":"0a3616b5-566e-414e-a225-fb850d6418dc","metadata":{"jupyter":{"outputs_hidden":false,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["labs.run_model_bpa(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"6fb32a58","metadata":{},"source":["This runs the rules and exports the results to a table in your lakehouse."]},{"cell_type":"code","execution_count":null,"id":"677851c3","metadata":{},"outputs":[],"source":["labs.run_model_bpa(dataset = '', workspace = None, export = True)"]},{"cell_type":"markdown","id":"8126a1a1","metadata":{},"source":["### Direct Lake\n","\n","Check if any lakehouse tables will hit the [Direct Lake guardrails](https://learn.microsoft.com/power-bi/enterprise/directlake-overview#fallback)."]},{"cell_type":"code","execution_count":null,"id":"e7397b15","metadata":{},"outputs":[],"source":["lake.get_lakehouse_tables(lakehouse = None, workspace = None, extended = True, count_rows = False)"]},{"cell_type":"code","execution_count":null,"id":"b30074cf","metadata":{},"outputs":[],"source":["lake.get_lakehouse_tables(lakehouse = None, workspace = None, extended = True, count_rows = False, export = True)"]},{"cell_type":"markdown","id":"99b84f2b","metadata":{},"source":["Check if any tables in a Direct Lake semantic model will fall back to DirectQuery."]},{"cell_type":"code","execution_count":null,"id":"f837be58","metadata":{},"outputs":[],"source":["directlake.check_fallback_reason(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"8f6df93e","metadata":{},"source":["### [OPTIMIZE](https://docs.delta.io/latest/optimizations-oss.html) your lakehouse delta tables."]},{"cell_type":"code","execution_count":null,"id":"e0262c9e","metadata":{},"outputs":[],"source":["lake.optimize_lakehouse_tables(tables = ['', ''], lakehouse = None, workspace = None)"]},{"cell_type":"markdown","id":"0091d6a0","metadata":{},"source":["Refresh/reframe your Direct Lake semantic model and restore the columns which were in memory prior to the refresh."]},{"cell_type":"code","execution_count":null,"id":"77eef082","metadata":{},"outputs":[],"source":["directlake.warm_direct_lake_cache_isresident(dataset = '', workspace = None)"]},{"cell_type":"markdown","id":"dae1a210","metadata":{},"source":["Ensure a warm cache for your users by putting the columns of a Direct Lake semantic model into memory based on the contents of a [perspective](https://learn.microsoft.com/analysis-services/tabular-models/perspectives-ssas-tabular?view=asallproducts-allversions).\n","\n","Perspectives can be created either in [Tabular Editor 3](https://github.com/TabularEditor/TabularEditor3/releases/latest) or in [Tabular Editor 2](https://github.com/TabularEditor/TabularEditor/releases/latest) using the [Perspective Editor](https://www.elegantbi.com/post/perspectiveeditor)."]},{"cell_type":"code","execution_count":null,"id":"43297001","metadata":{},"outputs":[],"source":["directlake.warm_direct_lake_cache_perspective(dataset = '', workspace = None, perspective = '', add_dependencies = True)"]}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python"},"nteract":{"version":"nteract-front-end@1.0.0"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5}
2 changes: 1 addition & 1 deletion notebooks/Query Scale Out.ipynb
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"cells":[{"cell_type":"markdown","id":"5c27dfd1-4fe0-4a97-92e6-ddf78889aa93","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Install the latest .whl package\n","\n","Check [here](https://github.com/microsoft/semantic-link-labs) to see the latest version.\n","\n","Check [here](https://github.com/microsoft/semantic-link-labs/releases) for the library's release notes."]},{"cell_type":"code","execution_count":null,"id":"d5cae9db-cef9-48a8-a351-9c5fcc99645c","metadata":{"jupyter":{"outputs_hidden":true,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%pip install \"https://raw.githubusercontent.com/microsoft/semantic-link-labs/main/semantic-link-labs-0.4.1-py3-none-any.whl\""]},{"cell_type":"markdown","id":"b195eae8","metadata":{},"source":["### Import the library and set the initial parameters"]},{"cell_type":"code","execution_count":null,"id":"1344e286","metadata":{},"outputs":[],"source":["import sempy_labs as labs\n","dataset = '' # Enter your dataset name\n","workspace = None # Enter your workspace name (if set to None it will use the workspace in which the notebook is running)"]},{"cell_type":"markdown","id":"5a3fe6e8-b8aa-4447-812b-7931831e07fe","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### View [Query Scale Out](https://learn.microsoft.com/power-bi/enterprise/service-premium-scale-out) (QSO) settings"]},{"cell_type":"code","execution_count":null,"id":"9e349954","metadata":{},"outputs":[],"source":["labs.list_qso_settings(dataset = dataset, workspace = workspace )"]},{"cell_type":"markdown","id":"b0717cbb","metadata":{},"source":["### [Configure Query Scale Out](https://learn.microsoft.com/power-bi/enterprise/service-premium-scale-out-configure)\n","Setting 'auto_sync' to True will ensure that the semantic model automatically syncs read-only replicas. Setting this to False will necessitate syncing the replicas (i.e. via the qso_sync function).\n","\n","The 'max_read_only_replicas' is the maximum number of read-only replicas for the semantic model (0-64, -1 for automatic number of replicas).\n"]},{"cell_type":"code","execution_count":null,"id":"ec37dd14","metadata":{},"outputs":[],"source":["labs.set_qso(dataset = dataset, auto_sync = False, max_read_only_replicas = -1, workspace = workspace)"]},{"cell_type":"markdown","id":"5d6beadd","metadata":{},"source":["### Sync Query Scale Out replicas"]},{"cell_type":"code","execution_count":null,"id":"7ca10963","metadata":{},"outputs":[],"source":["labs.qso_sync(dataset = dataset, workspace = workspace)"]},{"cell_type":"markdown","id":"719f428f","metadata":{},"source":["### Check Query Scale Out Sync Status"]},{"cell_type":"code","execution_count":null,"id":"db6f197c","metadata":{},"outputs":[],"source":["dfA, dfB = labs.qso_sync_status(dataset = dataset, workspace = workspace)\n","display(dfA)\n","display(dfB)"]},{"cell_type":"markdown","id":"e92cdf34","metadata":{},"source":["### Disable Query Scale Out"]},{"cell_type":"code","execution_count":null,"id":"0624d649","metadata":{},"outputs":[],"source":["labs.disable_qso(dataset = dataset, workspace = workspace)"]},{"cell_type":"markdown","id":"786d89bc","metadata":{},"source":["### Enable large semantic model format"]},{"cell_type":"code","execution_count":null,"id":"d521b228","metadata":{},"outputs":[],"source":["labs.set_semantic_model_storage_format(dataset = dataset, storage_format = 'Large', workspace = workspace)"]},{"cell_type":"markdown","id":"e90c20e9","metadata":{},"source":["### Disable large semantic model format"]},{"cell_type":"code","execution_count":null,"id":"433220b2","metadata":{},"outputs":[],"source":["labs.set_semantic_model_storage_format(dataset = dataset, storage_format = 'Small', workspace = workspace)"]}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python"},"nteract":{"version":"nteract-front-end@1.0.0"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5}
{"cells":[{"cell_type":"markdown","id":"5c27dfd1-4fe0-4a97-92e6-ddf78889aa93","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### Install the latest .whl package\n","\n","Check [here](https://pypi.org/project/semantic-link-labs/) to see the latest version."]},{"cell_type":"code","execution_count":null,"id":"d5cae9db-cef9-48a8-a351-9c5fcc99645c","metadata":{"jupyter":{"outputs_hidden":true,"source_hidden":false},"nteract":{"transient":{"deleting":false}}},"outputs":[],"source":["%pip install semantic-link-labs"]},{"cell_type":"markdown","id":"b195eae8","metadata":{},"source":["### Import the library and set the initial parameters"]},{"cell_type":"code","execution_count":null,"id":"1344e286","metadata":{},"outputs":[],"source":["import sempy_labs as labs\n","dataset = '' # Enter your dataset name\n","workspace = None # Enter your workspace name (if set to None it will use the workspace in which the notebook is running)"]},{"cell_type":"markdown","id":"5a3fe6e8-b8aa-4447-812b-7931831e07fe","metadata":{"nteract":{"transient":{"deleting":false}}},"source":["### View [Query Scale Out](https://learn.microsoft.com/power-bi/enterprise/service-premium-scale-out) (QSO) settings"]},{"cell_type":"code","execution_count":null,"id":"9e349954","metadata":{},"outputs":[],"source":["labs.list_qso_settings(dataset = dataset, workspace = workspace )"]},{"cell_type":"markdown","id":"b0717cbb","metadata":{},"source":["### [Configure Query Scale Out](https://learn.microsoft.com/power-bi/enterprise/service-premium-scale-out-configure)\n","Setting 'auto_sync' to True will ensure that the semantic model automatically syncs read-only replicas. Setting this to False will necessitate syncing the replicas (i.e. via the qso_sync function).\n","\n","The 'max_read_only_replicas' is the maximum number of read-only replicas for the semantic model (0-64, -1 for automatic number of replicas).\n"]},{"cell_type":"code","execution_count":null,"id":"ec37dd14","metadata":{},"outputs":[],"source":["labs.set_qso(dataset = dataset, auto_sync = False, max_read_only_replicas = -1, workspace = workspace)"]},{"cell_type":"markdown","id":"5d6beadd","metadata":{},"source":["### Sync Query Scale Out replicas"]},{"cell_type":"code","execution_count":null,"id":"7ca10963","metadata":{},"outputs":[],"source":["labs.qso_sync(dataset = dataset, workspace = workspace)"]},{"cell_type":"markdown","id":"719f428f","metadata":{},"source":["### Check Query Scale Out Sync Status"]},{"cell_type":"code","execution_count":null,"id":"db6f197c","metadata":{},"outputs":[],"source":["dfA, dfB = labs.qso_sync_status(dataset = dataset, workspace = workspace)\n","display(dfA)\n","display(dfB)"]},{"cell_type":"markdown","id":"e92cdf34","metadata":{},"source":["### Disable Query Scale Out"]},{"cell_type":"code","execution_count":null,"id":"0624d649","metadata":{},"outputs":[],"source":["labs.disable_qso(dataset = dataset, workspace = workspace)"]},{"cell_type":"markdown","id":"786d89bc","metadata":{},"source":["### Enable large semantic model format"]},{"cell_type":"code","execution_count":null,"id":"d521b228","metadata":{},"outputs":[],"source":["labs.set_semantic_model_storage_format(dataset = dataset, storage_format = 'Large', workspace = workspace)"]},{"cell_type":"markdown","id":"e90c20e9","metadata":{},"source":["### Disable large semantic model format"]},{"cell_type":"code","execution_count":null,"id":"433220b2","metadata":{},"outputs":[],"source":["labs.set_semantic_model_storage_format(dataset = dataset, storage_format = 'Small', workspace = workspace)"]}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"display_name":"Synapse PySpark","language":"Python","name":"synapse_pyspark"},"language_info":{"name":"python"},"microsoft":{"language":"python"},"nteract":{"version":"nteract-front-end@1.0.0"},"spark_compute":{"compute_id":"/trident/default"},"synapse_widget":{"state":{},"version":"0.1"},"widgets":{}},"nbformat":4,"nbformat_minor":5}
2 changes: 1 addition & 1 deletion notebooks/Tabular Object Model.ipynb

Large diffs are not rendered by default.

Loading

0 comments on commit 1298909

Please sign in to comment.