-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
272 lines (237 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
import xclib.data.data_utils as data_utils
from dl_base import *
import numpy as np
import scipy.sparse as sp
import os
import argparse
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from transformers import AutoModel
from collections import OrderedDict
#from torch.profiler import profile, record_function, ProfilerActivity
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def start(device, ngpus_per_node, args):
# set seed
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
torch.cuda.set_device(device)
nb_id = device
# initialize the process group
if args.world_size > 1:
if args.world_size > ngpus_per_node: # multi node, multi gpu training
args.rank = args.rank * ngpus_per_node + device
else: # single node, multi gpu training
args.rank = device
my_rank = args.rank
dist.init_process_group("nccl", init_method=args.dist_url, rank=my_rank, world_size=args.world_size)
else: # single node, single gpu training
args.rank = my_rank = 0
dataset = args.data_dir.split('/')[-1]
results_dir = f'./Results/Bert-XC/'
expname = args.expname
os.makedirs(results_dir, exist_ok=True)
device = f'cuda:{nb_id}'
torch.cuda.set_device(device)
# Load Data
DATA_DIR = args.data_dir
trn_X_Y = data_utils.read_sparse_file(f'{DATA_DIR}/trn_X_Y.txt')
tst_X_Y = data_utils.read_sparse_file(f'{DATA_DIR}/tst_X_Y.txt')
tst_shape_0, tst_shape_1 = tst_X_Y.shape[0], tst_X_Y.shape[1]
if my_rank > 0: # only rank 0 does eval
tst_X_Y = None
if "Amazon" in dataset: A = 0.6; B = 2.6
elif "Wiki" in dataset: A = 0.5; B = 0.4
else : A = 0.55; B = 1.5
inv_prop = xc_metrics.compute_inv_propesity(trn_X_Y, A, B)
temp = np.fromfile('%s/tst_filter_labels.txt'%(DATA_DIR), sep=' ').astype(int)
temp = temp.reshape(-1, 2).T
tst_filter_mat = sp.coo_matrix((np.ones(temp.shape[1]), (temp[0], temp[1])), (tst_shape_0,tst_shape_1)).tocsr()
if 'roberta' in args.tf: tokenizer_type = 'roberta-base'
elif 'bert' in args.tf: tokenizer_type = 'bert-base-uncased'
elif 'MiniLM' in args.tf: tokenizer_type = 'miniLM_L6'
else:
tokenizer_type = args.tf
print("Potentially unsupported tokenizer_type ",args.tf)
if 'MiniLM' in args.tf:
tokenizer_type = 'roberta-base'
padded_numy = trn_X_Y.shape[1]
if (padded_numy % args.world_size != 0):
padded_numy = args.world_size*((trn_X_Y.shape[1] + args.world_size -1)//args.world_size)
if my_rank == 0:
print("Rounding numy to",padded_numy)
numy_per_gpu = padded_numy // args.world_size
if (numy_per_gpu % 16 != 0):
padded_numy = args.world_size*16*((numy_per_gpu + 15)//16)
numy_per_gpu = padded_numy // args.world_size
if my_rank == 0:
print("Rounding numy further to",padded_numy)
if my_rank == 0:
print("Final numy_per_gpu: ",numy_per_gpu)
#Dataloaders
num_points = trn_X_Y.shape[0]
start_label = my_rank*numy_per_gpu
end_label = (my_rank+1)*numy_per_gpu
# restrict the train dataset to only the labels that this rank is responsible for
trn_X_Y_rank = trn_X_Y.tocsc()[:,start_label:end_label].tocsr()
trn_dataset = PreTokBertDataset(f'{DATA_DIR}/{tokenizer_type}-{args.maxlen}', trn_X_Y_rank, num_points, args.maxlen, doc_type='trn')
tst_dataset = PreTokBertDataset(f'{DATA_DIR}/{tokenizer_type}-{args.maxlen}', tst_X_Y, tst_shape_0, args.maxlen, doc_type='tst')
gbsz = args.batch_size*args.world_size # everyone gets all labels
num_workers = 4
trn_loader = torch.utils.data.DataLoader(
trn_dataset,
sampler=None,
batch_size=gbsz,
num_workers=num_workers,
collate_fn=XCCollator(padded_numy, trn_dataset, my_rank, args.world_size, args.accum, gbsz//args.accum, True, args.default_impl),
worker_init_fn=seed_worker, # need workers to use same seed so that batches are coordinated
persistent_workers = False if (num_workers < 1) else True,
shuffle=True,
pin_memory=False)
tst_loader = torch.utils.data.DataLoader(
tst_dataset,
batch_size=gbsz,
num_workers=num_workers,
collate_fn=XCCollator(padded_numy, tst_dataset, my_rank, args.world_size, args.accum, gbsz//args.accum, False, args.default_impl),
worker_init_fn=seed_worker, # need workers to use same seed so that batches are coordinated
persistent_workers = False if (num_workers < 1) else True,
shuffle=False,
pin_memory=False)
# Pre-trained custom Transformer Input layer
try:
encoder_ = AutoModel.from_pretrained(args.tf,add_pooling_layer=False)
except:
encoder_ = AutoModel.from_pretrained(args.tf)
# whether or not to use ngame pretrained encoder (which is M1 in the ngame paper) as initialization.
if args.use_ngame_encoder!='':
# path_to_ngame_model = f"/home/someh/xc_v/ngame_pretrained_models/{args.dataset}/state_dict.pt"
path_to_ngame_model = args.use_ngame_encoder
print("Using NGAME pretrained encoder. Loading from {}".format(path_to_ngame_model))
new_state_dict = OrderedDict()
old_state_dict = torch.load(path_to_ngame_model, map_location="cpu")
for k, v in old_state_dict.items():
name = k.replace("embedding_labels.encoder.transformer.0.auto_model.", "")
new_state_dict[name] = v
print(encoder_.load_state_dict(new_state_dict, strict=True))
encoder = TransformerInputLayer(encoder_)
if args.bottleneck_dims > 0:
modules = [encoder, FP32Linear(encoder.transformer.config.hidden_size, args.bottleneck_dims, bias=False), nn.Dropout(args.dropout) ]
else:
modules = [encoder, nn.Dropout(args.dropout)]
args.bottleneck_dims = encoder.transformer.config.hidden_size
model = GenericModel(my_rank, args, trn_X_Y.shape[1], numy_per_gpu, args.batch_size, modules, device=device, name=expname, out_dir=f'{results_dir}/{dataset}/{expname}')
if args.compile:
model.embed[0] = torch.compile(model.embed[0])
model = model.cuda()
#model.load()
if args.world_size>1:
model.embed = DDP(model.embed, device_ids=[my_rank%ngpus_per_node])
if args.default_impl:
trn_loss = BCELossMultiNodeDefault(model)
else:
trn_loss = BCELossMultiNode(model)
model.epochs = args.epochs
predictor = FullPredictor()
evaluator = PrecEvaluator(model, tst_loader, predictor, filter_mat=tst_filter_mat, inv_prop=inv_prop)
#evaluator(trn_loss,out_dir=None, name=model.name)
if args.infer:
model.load()
evaluator(trn_loss,out_dir=None, name=model.name)
else:
model.fit(trn_loader, trn_loss,
xfc_optimizer_class = apex.optimizers.FusedSGD,
xfc_optimizer_params= {'lr': args.lr1, 'momentum': args.mo, 'weight_decay': args.wd1, 'set_grad_none': True},
tf_optimizer_class = apex.optimizers.FusedAdam,
tf_optimizer_params= {'lr': args.lr2, 'eps': 1e-06, 'set_grad_none': True, 'bias_correction': True, 'weight_decay': args.wd2},
epochs = args.epochs, warmup_steps = args.warmup,
evaluator=evaluator,
evaluation_epochs=5,
# max_grad_norm=5.0)
)
def main():
# Training settings
parser = argparse.ArgumentParser(description='BERT XFC')
parser.add_argument('--data-dir', type=str, default='',
help='Path to dataset directory')
# parser.add_argument('--dataset', type=str, default='LF-Wikipedia-500K', metavar='N',
# help='name of the dataset')
parser.add_argument('--custom-cuda', action='store_true', default=False,
help='Use custom_cuda kernels for fp16 training. Please ensure the custom kernels are optimized for the matmul sizes!!!')
parser.add_argument('--default-impl', action='store_true', default=False,
help='Use default implemenation -- to get a sense of how much perf optimization gains over the default approach')
parser.add_argument('--batch-size', type=int, default=8, metavar='N',
help='input per GPU batch size for training (default: 8)')
parser.add_argument('--epochs', type=int, default=50, metavar='N',
help='number of epochs to train (default: 50)')
parser.add_argument('--expname', type=str, default='renee-exp', metavar='N',
help='Name of exp')
parser.add_argument('--device', type=int, default=None, metavar='N',
help='Single device training (default: None)')
parser.add_argument('--dist-url', default='tcp://localhost:23456', type=str,
help='url used to set up distributed training; replace localhost with IP of rank 0 for multinode training')
parser.add_argument('--rank', type=int, default=0, metavar='N',
help='Rank of node used in training (default: 0, should range from 0 to world-size -1)')
parser.add_argument('--world-size', type=int, default=1, metavar='N',
help='Number of nodes used in training (default: 1)')
parser.add_argument('--seed', type=int, default=42, metavar='N',
help='seed (default: 42)')
parser.add_argument('--bottleneck-dims', type=int, default=0, metavar='N',
help='bottleneck before fc layer (default: 0 means no bottleneck)')
parser.add_argument('--dropout', type=float, default=0.5, metavar='N',
help='Dropout prob (default: 0.5)')
parser.add_argument('--lr1', type=float, default=0.0025, metavar='LR',
help='learning rate for xfc layer (default: 0.025)')
parser.add_argument('--lr2', type=float, default=1e-5, metavar='LR',
help='learning rate for encoder (default: 1e-4)')
parser.add_argument('--mo', type=float, default=0.9, metavar='MO',
help='momentum for xfc layer (default: 0.9)')
parser.add_argument('--wd1', type=float, default=0.01, metavar='WD',
help='weight decay for xfc layer (default: 0.01)')
parser.add_argument('--wd2', type=float, default=0.01, metavar='WD',
help='weight decay for encoder (default: 0.01)')
parser.add_argument('--fp32encoder', action='store_true', default=False,
help='enable fp32 for encoder (default fp16)')
parser.add_argument('--fp16xfc', action='store_true', default=False,
help='enable fp16 for xfc layer (default fp32)')
parser.add_argument('--noloss', action='store_true', default=False,
help='Skip loss computation (only accuracy is valid), saving memory/compute at extreme scale')
parser.add_argument('--checkpoint-resume', type=str, default='',
help='DIR to checkpoint each epoch/resume from most recent checkpoint')
parser.add_argument('--infer', action='store_true', default=False,
help='Perform inference of pre-trained model')
parser.add_argument('--warmup', type=int, default=140000, metavar='N',
help='number of steps for warmup (default: 140000)')
parser.add_argument('--accum', type=int, default=1, metavar='N',
help='gradient accumulation steps in XFC layer to save memory (default: 1)')
parser.add_argument('--pre-tok', action='store_true', default=False,
help='Use pre tokenized .dat files for dataset')
parser.add_argument('--maxlen', type=int, default=32, metavar='N',
help='max seq length for transformer')
parser.add_argument('--tf', type=str, default='distilbert-base-uncased', metavar='N',
help='encoder transformer type')
# parser.add_argument('--use-ngame-encoder', action='store_true', default=False,
# help='Use NGAME pretrained encoder as initialization point for trainings')
parser.add_argument('--use-ngame-encoder', type=str, default='',
help='Path to NGAME pretrained encoder as initialization point for trainings')
parser.add_argument('--compile', action='store_true', default=False,
help='Compile model using PyTorch 2.0')
args = parser.parse_args()
print(args)
if args.device is not None:
print("Specific device chosen. Starting single device training")
start(args.device, 1, args)
else:
ngpus_per_node = torch.cuda.device_count()
args.world_size *= ngpus_per_node
if args.batch_size*args.world_size % args.accum != 0:
print("Code currently expects args.accum cleanly divides args.batch_size*args.world_size")
exit(-1)
print("Starting multi device training on ", args.world_size, " devices")
mp.spawn(start, nprocs=ngpus_per_node, args=(ngpus_per_node, args), join=True)
if __name__ == '__main__':
main()