diff --git a/katas/content/single_qubit_gates/prepare_rotated_state/index.md b/katas/content/single_qubit_gates/prepare_rotated_state/index.md
index 5d98b45d8c..12d1a5a576 100644
--- a/katas/content/single_qubit_gates/prepare_rotated_state/index.md
+++ b/katas/content/single_qubit_gates/prepare_rotated_state/index.md
@@ -5,6 +5,6 @@
**Goal:** Use a rotation gate to transform the qubit into state $\alpha|0\rangle -i\beta|1\rangle$.
-> You will probably need functions from the Math namespace, specifically ArcTan2.
+> You will probably need functions from the `Microsoft.Quantum.Math` namespace, specifically ArcTan2.
>
-> You can assign variables in Q# by using the `let` keyword: `let num = 3;` or `let result = Function(input);`
\ No newline at end of file
+> You can assign variables in Q# by using the `let` keyword: `let num = 3;` or `let result = Function(input);`
diff --git a/katas/content/single_qubit_gates/prepare_rotated_state/solution.md b/katas/content/single_qubit_gates/prepare_rotated_state/solution.md
index cff8e78f14..5c910cef49 100644
--- a/katas/content/single_qubit_gates/prepare_rotated_state/solution.md
+++ b/katas/content/single_qubit_gates/prepare_rotated_state/solution.md
@@ -3,7 +3,7 @@ This is similar to the state we need. We just need to find an angle $\theta$ suc
Hence the required gate is $R_x(2\arctan\frac{\beta}{\alpha})$, which in matrix form is $\begin{bmatrix} \alpha & -i\beta \\\ -i\beta & \alpha \end{bmatrix}$.
This gate turns $|0\rangle = \begin{bmatrix} 1 \\\ 0\end{bmatrix}$ into $\begin{bmatrix} \alpha & -i\beta \\\ -i\beta & \alpha \end{bmatrix} \begin{bmatrix} 1 \\\ 0\end{bmatrix} = \begin{bmatrix} \alpha \\\ -i\beta \end{bmatrix} = \alpha|0\rangle -i\beta|1\rangle$.
-> Trigonometric functions are available in Q# via the Math namespace. In this case we will need ArcTan2.
+> Trigonometric functions are available in Q# via the `Microsoft.Quantum.Math` namespace. In this case we will need ArcTan2.
@[solution]({
"id": "single_qubit_gates__prepare_rotated_state_solution",