Skip to content

microsoft/BioGPT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

50 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

BioGPT

This repository contains the implementation of BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining, by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.

Requirements and Installation

  • PyTorch version == 1.12.0
  • Python version == 3.10
  • fairseq version == 0.12.0:
git clone https://github.com/pytorch/fairseq
cd fairseq
git checkout v0.12.0
pip install .
python setup.py build_ext --inplace
cd ..
  • Moses
git clone https://github.com/moses-smt/mosesdecoder.git
export MOSES=${PWD}/mosesdecoder
  • fastBPE
git clone https://github.com/glample/fastBPE.git
export FASTBPE=${PWD}/fastBPE
cd fastBPE
g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast
  • sacremoses
pip install sacremoses
  • sklearn
pip install scikit-learn

Remember to set the environment variables MOSES and FASTBPE to the path of Moses and fastBPE respetively, as they will be required later.

Getting Started

Pre-trained models

We provide our pre-trained BioGPT model checkpoints along with fine-tuned checkpoints for downstream tasks, available both through URL download as well as through the Hugging Face πŸ€— Hub.

Model Description URL πŸ€— Hub
BioGPT Pre-trained BioGPT model checkpoint link link
BioGPT-Large Pre-trained BioGPT-Large model checkpoint link link
BioGPT-QA-PubMedQA-BioGPT Fine-tuned BioGPT for question answering task on PubMedQA link
BioGPT-QA-PubMedQA-BioGPT-Large Fine-tuned BioGPT-Large for question answering task on PubMedQA link
BioGPT-RE-BC5CDR Fine-tuned BioGPT for relation extraction task on BC5CDR link
BioGPT-RE-DDI Fine-tuned BioGPT for relation extraction task on DDI link
BioGPT-RE-DTI Fine-tuned BioGPT for relation extraction task on KD-DTI link
BioGPT-DC-HoC Fine-tuned BioGPT for document classification task on HoC link

Download them and extract them to the checkpoints folder of this project.

For example:

mkdir checkpoints
cd checkpoints
wget https://msralaphilly2.blob.core.windows.net/release/BioGPT/checkpoints/Pre-trained-BioGPT.tgz?sp=r&st=2023-11-13T15:37:35Z&se=2099-12-30T23:37:35Z&spr=https&sv=2022-11-02&sr=b&sig=3CcG1TOhqJPBhkVutvVn3PtUq0vPyLBgwggUfojypfY%3D
tar -zxvf Pre-trained-BioGPT.tgz

Example Usage

Use pre-trained BioGPT model in your code:

import torch
from fairseq.models.transformer_lm import TransformerLanguageModel
m = TransformerLanguageModel.from_pretrained(
        "checkpoints/Pre-trained-BioGPT", 
        "checkpoint.pt", 
        "data",
        tokenizer='moses', 
        bpe='fastbpe', 
        bpe_codes="data/bpecodes",
        min_len=100,
        max_len_b=1024)
m.cuda()
src_tokens = m.encode("COVID-19 is")
generate = m.generate([src_tokens], beam=5)[0]
output = m.decode(generate[0]["tokens"])
print(output)

Use fine-tuned BioGPT model on KD-DTI for drug-target-interaction in your code:

import torch
from src.transformer_lm_prompt import TransformerLanguageModelPrompt
m = TransformerLanguageModelPrompt.from_pretrained(
        "checkpoints/RE-DTI-BioGPT", 
        "checkpoint_avg.pt", 
        "data/KD-DTI/relis-bin",
        tokenizer='moses', 
        bpe='fastbpe', 
        bpe_codes="data/bpecodes",
        max_len_b=1024,
        beam=1)
m.cuda()
src_text="" # input text, e.g., a PubMed abstract
src_tokens = m.encode(src_text)
generate = m.generate([src_tokens], beam=args.beam)[0]
output = m.decode(generate[0]["tokens"])
print(output)

For more downstream tasks, please see below.

Downstream tasks

See corresponding folder in examples:

Hugging Face πŸ€— Usage

BioGPT has also been integrated into the Hugging Face transformers library, and model checkpoints are available on the Hugging Face Hub.

You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:

from transformers import pipeline, set_seed
from transformers import BioGptTokenizer, BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
set_seed(42)
generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True)

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import BioGptTokenizer, BioGptForCausalLM
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

Beam-search decoding:

import torch
from transformers import BioGptTokenizer, BioGptForCausalLM, set_seed

tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")

sentence = "COVID-19 is"
inputs = tokenizer(sentence, return_tensors="pt")

set_seed(42)

with torch.no_grad():
    beam_output = model.generate(**inputs,
                                 min_length=100,
                                 max_length=1024,
                                 num_beams=5,
                                 early_stopping=True
                                )
tokenizer.decode(beam_output[0], skip_special_tokens=True)

For more information, please see the documentation on the Hugging Face website.

Demos

Check out these demos on Hugging Face Spaces:

License

BioGPT is MIT-licensed. The license applies to the pre-trained models as well.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published