-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinfer.py
171 lines (157 loc) · 8.18 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
""" Model inference on completely new taxons
"""
import argparse
import torch
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.model as module_arch
from parse_config import ConfigParser
import dgl
from gensim.models import KeyedVectors
import numpy as np
import itertools
def encode_graph(model, bg, h, pos):
bg.ndata['h'] = model.graph_propagate(bg, h)
hg = model.readout(bg, pos)
return hg
def main(config, args_outer):
# Load new taxons and normalize embeddings if needed
vocab = []
nf = []
with open(args_outer.taxon, 'r') as fin:
for line in fin:
line = line.strip()
if line:
segs = line.split("\t")
vocab.append("_".join(segs[0].split(" ")))
nf.append([float(ele) for ele in segs[1].split(" ")])
nf = np.array(nf)
if config['train_data_loader']['args']['normalize_embed']:
row_sums = nf.sum(axis=1)
nf = nf / row_sums[:, np.newaxis]
kv = KeyedVectors(vector_size=nf.shape[1])
kv.add(vocab, nf)
# Load trained model and existing taxonomy
logger = config.get_logger('test')
torch.multiprocessing.set_sharing_strategy('file_system')
test_data_loader = module_data.MaskedGraphDataLoader(
mode="test",
data_path=config['test_data_loader']['args']['data_path'],
sampling_mode=0,
batch_size=1,
expand_factor=config['test_data_loader']['args']['expand_factor'],
shuffle=True,
num_workers=8,
batch_type="large_batch",
cache_refresh_time=config['test_data_loader']['args']['cache_refresh_time'],
normalize_embed=config['test_data_loader']['args']['normalize_embed'],
test_topk=args_outer.topk
)
logger.info(test_data_loader)
test_dataset = test_data_loader.dataset
indice2word = test_dataset.vocab
# build model architecture
model = config.initialize('arch', module_arch)
logger.info(model)
# load saved model
logger.info('Loading checkpoint: {} ...'.format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for inference
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
"""Start inference"""
anchor2subgraph = {}
for anchor in tqdm(test_dataset.graph.nodes()):
anchor2subgraph[anchor] = test_dataset._get_subgraph(-1, anchor, 0)
if args_outer.batch_size == -1: # small dataset with only one batch
logger.info('Small batch mode')
# obtain graph representation
bg = dgl.batch([v for k,v in anchor2subgraph.items()])
h = bg.ndata.pop('x').to(device)
candidate_position_idx = bg.ndata['_id'][bg.ndata['pos']==1].tolist()
n_position = len(candidate_position_idx)
pos = bg.ndata['pos'].to(device)
with torch.no_grad():
hg = encode_graph(model, bg, h, pos)
# start per query prediction
with torch.no_grad(), open(args_outer.save, "w") as fout:
fout.write(f"Query\tPredicted parents\n")
for i, query in tqdm(enumerate(vocab)):
nf = torch.tensor(kv[str(query)], dtype=torch.float32).to(device)
expanded_nf = nf.expand(n_position, -1)
energy_scores = model.match(hg, expanded_nf)
predicted_scores = energy_scores.cpu().squeeze_().tolist()
if config['loss'].startswith("info_nce"): # select top-5 predicted parents
predict_parent_idx_list = [candidate_position_idx[ele[0]] for ele in sorted(enumerate(predicted_scores), key=lambda x:-x[1])[:5]]
else:
predict_parent_idx_list = [candidate_position_idx[ele[0]] for ele in sorted(enumerate(predicted_scores), key=lambda x:x[1])[:5]]
predict_parents = ", ".join([indice2word[ele] for ele in predict_parent_idx_list])
fout.write(f"{query}\t{predict_parents}\n")
else:
logger.info(f'Large batch mode with batch_size = {args_outer.batch_size}')
# obtain graph representation
batched_hg = [] # save the CPU graph representation
batched_positions = []
bg = []
positions = []
with torch.no_grad():
for i, (anchor, egonet) in tqdm(enumerate(anchor2subgraph.items()), desc="Generating graph encoding ..."):
positions.append(anchor)
bg.append(egonet)
if (i+1) % args_outer.batch_size == 0:
bg = dgl.batch(bg)
h = bg.ndata.pop('x').to(device)
pos = bg.ndata['pos'].to(device)
hg = encode_graph(model, bg, h, pos)
assert hg.shape[0] == len(positions), f"mismatch between hg.shape[0]: {hg.shape[0]} and len(positions): {len(positions)}"
batched_hg.append(hg.cpu())
batched_positions.append(positions)
bg = []
positions = []
del h
if len(bg) != 0:
bg = dgl.batch(bg)
h = bg.ndata.pop('x').to(device)
pos = bg.ndata['pos'].to(device)
hg = encode_graph(model, bg, h, pos)
assert hg.shape[0] == len(positions), f"mismatch between hg.shape[0]: {hg.shape[0]} and len(positions): {len(positions)}"
batched_hg.append(hg.cpu())
batched_positions.append(positions)
del h
# start per query prediction
batched_hg = [hg.to(device) for hg in batched_hg] # move graph representations from cpu back to gpu
candidate_position_idx = list(itertools.chain(*batched_positions))
with torch.no_grad(), open(args_outer.save, "w") as fout:
fout.write(f"Query\tPredicted parents\n")
for i, query in tqdm(enumerate(vocab)):
nf = torch.tensor(kv[str(query)], dtype=torch.float32).to(device)
batched_energy_scores = []
for hg, positions in zip(batched_hg, batched_positions):
n_position = len(positions)
expanded_nf = nf.expand(n_position, -1)
energy_scores = model.match(hg, expanded_nf) # a tensor of size (n_position, 1)
batched_energy_scores.append(energy_scores)
batched_energy_scores = torch.cat(batched_energy_scores)
predicted_scores = batched_energy_scores.cpu().squeeze_().tolist()
if config['loss'].startswith("info_nce"):
predict_parent_idx_list = [candidate_position_idx[ele[0]] for ele in sorted(enumerate(predicted_scores), key=lambda x:-x[1])[:5]]
else:
predict_parent_idx_list = [candidate_position_idx[ele[0]] for ele in sorted(enumerate(predicted_scores), key=lambda x:x[1])[:5]]
predict_parents = ", ".join([indice2word[ele] for ele in predict_parent_idx_list])
fout.write(f"{query}\t{predict_parents}\n")
if __name__ == '__main__':
args = argparse.ArgumentParser(description='Testing structure expansion model with case study logging')
args.add_argument('-r', '--resume', default=None, type=str, help='path to latest model checkpoint (default: None)')
args.add_argument('-t', '--taxon', default=None, type=str, help='path to new taxon list (default: None)')
args.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)')
args.add_argument('-k', '--topk', default=-1, type=int, help='topk retrieved instances for testing, -1 means no retrieval stage (default: -1)')
args.add_argument('-b', '--batch_size', default=-1, type=int, help='batch size, -1 for small dataset (default: -1), 20000 for larger MAG-Full data')
args.add_argument('-s', '--save', default="./case_studies/prediction_results.tsv", type=str, help='save file for prediction results (default: ./case_studies/prediction_results.tsv)')
args_outer = args.parse_args()
config = ConfigParser(args)
main(config, args_outer)