-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnoisynet.py
1787 lines (1496 loc) · 101 KB
/
noisynet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
from torch import nn
from torch.optim import lr_scheduler
import torch.nn.functional as F
import random
import os
from datetime import datetime
import argparse
import numpy as np
import utils
from plot_histograms import plot, plot_layers, get_layers
from hardware_model import add_noise_calculate_power, NoisyConv2d, NoisyLinear, QuantMeasure
from main import merge_batchnorm, distort_weights, test_distortion
import scipy.io
#CUDA_LAUNCH_BLOCKING=1
parser = argparse.ArgumentParser(description='Your project title goes here', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
#parser.add_argument('--dataset', type=str, default='cifar_RGB_4bit.npz', metavar='', help='name of dataset')
parser.add_argument('--dataset', type=str, default='data/cifar_RGB_4bit.npz', metavar='', help='name of dataset')
parser.add_argument('--resume', type=str, default=None, metavar='', help='full path of models to resume training')
parser.add_argument('--tag', type=str, default='', metavar='', help='string to prepend to args.checkpoint_dir')
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--generate_input', dest='generate_input', action='store_true')
feature_parser.add_argument('--no-generate_input', dest='generate_input', action='store_false')
parser.set_defaults(generate_input=False) #default is to load entire cifar into RAM
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--use_bias', dest='use_bias', action='store_true')
feature_parser.add_argument('--no-use_bias', dest='use_bias', action='store_false')
parser.set_defaults(use_bias=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--fp16', dest='fp16', action='store_true')
feature_parser.add_argument('--no-fp16', dest='fp16', action='store_false')
parser.set_defaults(fp16=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--keep_bn_fp32', dest='keep_bn_fp32', action='store_true')
feature_parser.add_argument('--no-keep_bn_fp32', dest='keep_bn_fp32', action='store_false')
parser.set_defaults(keep_bn_fp32=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--augment', dest='augment', action='store_true')
feature_parser.add_argument('--no-augment', dest='augment', action='store_false')
parser.set_defaults(augment=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--normalize', dest='normalize', action='store_true')
feature_parser.add_argument('--no-normalize', dest='normalize', action='store_false')
parser.set_defaults(normalize=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--whiten_cifar10', dest='whiten_cifar10', action='store_true')
feature_parser.add_argument('--no-whiten_cifar10', dest='whiten_cifar10', action='store_false')
parser.set_defaults(whiten_cifar10=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--train_act_max', dest='train_act_max', action='store_true')
feature_parser.add_argument('--no-train_act_max', dest='train_act_max', action='store_false')
parser.set_defaults(train_act_max=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--train_w_max', dest='train_w_max', action='store_true')
feature_parser.add_argument('--no-train_w_max', dest='train_w_max', action='store_false')
parser.set_defaults(train_w_max=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--batchnorm', dest='batchnorm', action='store_true')
feature_parser.add_argument('--no-batchnorm', dest='batchnorm', action='store_false')
parser.set_defaults(batchnorm=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--bn3', dest='bn3', action='store_true')
feature_parser.add_argument('--no-bn3', dest='bn3', action='store_false')
parser.set_defaults(bn3=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--bn4', dest='bn4', action='store_true')
feature_parser.add_argument('--no-bn4', dest='bn4', action='store_false')
parser.set_defaults(bn4=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--biprecision', dest='biprecision', action='store_true')
feature_parser.add_argument('--no-biprecision', dest='biprecision', action='store_false')
parser.set_defaults(biprecision=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--amsgrad', dest='amsgrad', action='store_true')
feature_parser.add_argument('--no-amsgrad', dest='amsgrad', action='store_false')
parser.set_defaults(amsgrad=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--debug', dest='debug', action='store_true')
feature_parser.add_argument('--no-debug', dest='debug', action='store_false')
parser.set_defaults(debug=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--nesterov', dest='nesterov', action='store_true')
feature_parser.add_argument('--no-nesterov', dest='nesterov', action='store_false')
parser.set_defaults(nesterov=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--split', dest='split', action='store_true')
feature_parser.add_argument('--no-split', dest='split', action='store_false')
parser.set_defaults(split=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--debug_quant', dest='debug_quant', action='store_true')
feature_parser.add_argument('--no-debug_quant', dest='debug_quant', action='store_false')
parser.set_defaults(debug_quant=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--distort_w_test', dest='distort_w_test', action='store_true')
feature_parser.add_argument('--no-distort_w_test', dest='distort_w_test', action='store_false')
parser.set_defaults(distort_w_test=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--write', dest='write', action='store_true')
feature_parser.add_argument('--no-write', dest='write', action='store_false')
parser.set_defaults(write=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--plot', dest='plot', action='store_true')
feature_parser.add_argument('--no-plot', dest='plot', action='store_false')
parser.set_defaults(plot=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--plot_basic', dest='plot_basic', action='store_true')
feature_parser.add_argument('--no-plot_basic', dest='plot_basic', action='store_false')
parser.set_defaults(plot_basic=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--plot_noise', dest='plot_noise', action='store_true')
feature_parser.add_argument('--no-plot_noise', dest='plot_noise', action='store_false')
parser.set_defaults(plot_noise=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--plot_power', dest='plot_power', action='store_true')
feature_parser.add_argument('--no-plot_power', dest='plot_power', action='store_false')
parser.set_defaults(plot_power=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--weightnorm', dest='weightnorm', action='store_true')
feature_parser.add_argument('--no-weightnorm', dest='weightnorm', action='store_false')
parser.set_defaults(weightnorm=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--print_clip', dest='print_clip', action='store_true')
feature_parser.add_argument('--no-print_clip', dest='print_clip', action='store_false')
parser.set_defaults(print_clip=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--track_running_stats', dest='track_running_stats', action='store_true')
feature_parser.add_argument('--no-track_running_stats', dest='track_running_stats', action='store_false')
parser.set_defaults(track_running_stats=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--noise_test', dest='noise_test', action='store_true')
feature_parser.add_argument('--no-noise_test', dest='noise_test', action='store_false')
parser.set_defaults(noise_test=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--merged_dac', dest='merged_dac', action='store_true')
feature_parser.add_argument('--no-merged_dac', dest='merged_dac', action='store_false')
parser.set_defaults(merged_dac=True)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--merge_bn', dest='merge_bn', action='store_true')
feature_parser.add_argument('--no-merge_bn', dest='merge_bn', action='store_false')
parser.set_defaults(merge_bn=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--blocked', dest='blocked', action='store_true')
feature_parser.add_argument('--no-blocked', dest='blocked', action='store_false')
parser.set_defaults(blocked=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--print_stats', dest='print_stats', action='store_true')
feature_parser.add_argument('--no-print_stats', dest='print_stats', action='store_false')
parser.set_defaults(print_stats=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--calculate_running', dest='calculate_running', action='store_true')
feature_parser.add_argument('--no-calculate_running', dest='calculate_running', action='store_false')
parser.set_defaults(calculate_running=False)
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--debug_noise', dest='debug_noise', action='store_true')
feature_parser.add_argument('--no-debug_noise', dest='debug_noise', action='store_false')
parser.set_defaults(debug_noise=False)
parser.add_argument('-a', '--arch', metavar='ARCH', default='noisynet')
parser.add_argument('--current', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--current1', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--current2', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--current3', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--current4', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--noise', type=float, default=0.0, metavar='', help='magnitude of noise to add to weights or activations, e.g. noise=0.02 is equivalent to adding 2%% noise')
parser.add_argument('--train_current', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--test_current', type=float, default=0.0, metavar='', help='current level in nano Amps, which determines the noise level. 0 disables noise')
parser.add_argument('--act_max', type=float, default=0.0, metavar='', help='max value for ReLU act (clipping upper bound)')
parser.add_argument('--act_max1', type=float, default=0.0, metavar='', help='max value for ReLU1 act (clipping upper bound)')
parser.add_argument('--act_max2', type=float, default=0.0, metavar='', help='max value for ReLU2 act (clipping upper bound)')
parser.add_argument('--act_max3', type=float, default=0.0, metavar='', help='max value for ReLU3 act (clipping upper bound)')
parser.add_argument('--w_min1', type=float, default=0.0, metavar='', help='min value for layer 1 weights (clipping lower bound)')
parser.add_argument('--w_max', type=float, default=0.0, metavar='', help='max value for layer 1 weights (clipping upper bound)')
parser.add_argument('--w_max1', type=float, default=0.0, metavar='', help='max value for layer 1 weights (clipping upper bound)')
parser.add_argument('--w_max2', type=float, default=0.0, metavar='', help='max value for layer 2 weights (clipping upper bound)')
parser.add_argument('--w_max3', type=float, default=0.0, metavar='', help='max value for layer 3 weights (clipping upper bound)')
parser.add_argument('--w_max4', type=float, default=0.0, metavar='', help='max value for layer 4 weights (clipping upper bound)')
parser.add_argument('--grad_clip', type=float, default=0.0, metavar='', help='clip gradients if grow beyond this value')
parser.add_argument('--dropout', type=float, default=0.0, metavar='', help='dropout parameter')
parser.add_argument('--dropout_conv', type=float, default=0.0, metavar='', help='dropout parameter')
parser.add_argument('--distort_act', dest='distort_act', action='store_true', help='distort activations')
# ======================== Training Settings =======================================
parser.add_argument('--batch_size', '--batchsize', '--batch-size', '--bs', type=int, default=64, metavar='', help='batch size for training')
parser.add_argument('--nepochs', type=int, default=250, metavar='', help='number of epochs to train')
parser.add_argument('--num_sims', type=int, default=1, metavar='', help='number of simulation runs')
parser.add_argument('--num_layers', type=int, default=4, metavar='', help='number of layers')
parser.add_argument('--fs', type=int, default=5, metavar='', help='filter size')
parser.add_argument('--fm1', type=int, default=65, metavar='', help='number of feature maps in the first layer')
parser.add_argument('--fm2', type=int, default=120, metavar='', help='number of feature maps in the first layer')
parser.add_argument('--fm3', type=int, default=256, metavar='', help='number of feature maps in the first layer')
parser.add_argument('--fm4', type=int, default=512, metavar='', help='number of feature maps in the first layer')
parser.add_argument('--fc', type=int, default=390, metavar='', help='size of fully connected layer')
parser.add_argument('--width', type=int, default=1, metavar='', help='expansion multiplier for layer width')
parser.add_argument('--block_size', type=int, default=None, metavar='', help='block size for plotting')
# ======================== Hyperparameter Setings ==================================
parser.add_argument('--LR_act_max', type=float, default=0.001, metavar='', help='learning rate for learning act_max clipping threshold')
parser.add_argument('--LR_w_max', type=float, default=0.001, metavar='', help='learning rate for learning w_max clipping threshold')
parser.add_argument('--LR_1', type=float, default=0.0, metavar='', help='learning rate for learning first layer weights')
parser.add_argument('--LR_2', type=float, default=0.0, metavar='', help='learning rate for learning second layer weights')
parser.add_argument('--LR_3', type=float, default=0.0, metavar='', help='learning rate for learning third layer weights')
parser.add_argument('--LR_4', type=float, default=0.0, metavar='', help='learning rate for learning fourth layer weights')
parser.add_argument('--LR', type=float, default=0.001, metavar='', help='learning rate')
parser.add_argument('--LR_decay', type=float, default=0.95, metavar='', help='learning rate decay')
parser.add_argument('--LR_step_after', type=int, default=100, metavar='', help='multiply learning rate by LR_step after this number of epochs')
parser.add_argument('--LR_max_epoch', type=int, default=10, metavar='', help='for triangle LR schedule (super-convergence) this is the epoch with max LR')
parser.add_argument('--LR_finetune_epochs', type=int, default=20, metavar='', help='for triangle LR schedule (super-convergence), number of epochs to finetune in the end')
parser.add_argument('--LR_step', type=float, default=0.1, metavar='', help='reduce learning rate by this number after LR_step_after number of epochs')
parser.add_argument('--momentum', type=float, default=0.9, metavar='', help='momentum')
parser.add_argument('--optim', type=str, default='AdamW', metavar='', help='optimizer type')
parser.add_argument('--LR_scheduler', type=str, default='manual', metavar='', help='LR scheduler type')
parser.add_argument('--L1_1', type=float, default=0.0, metavar='', help='L1 penalty (conv1 layer)')
parser.add_argument('--L1_2', type=float, default=0.0, metavar='', help='L1 penalty (conv2 layer)')
parser.add_argument('--L1_3', type=float, default=0.0, metavar='', help='L1 penalty (linear1 layer)')
parser.add_argument('--L1_4', type=float, default=0.0, metavar='', help='L1 penalty (linear2 layer)')
parser.add_argument('--L1', type=float, default=0.0, metavar='', help='L1 penalty')
parser.add_argument('--L2_w_max', type=float, default=0.000, metavar='', help='loss penalty scale to minimize w_max')
parser.add_argument('--L2_act_max', type=float, default=0.000, metavar='', help='loss penalty scale to minimize act_max')
parser.add_argument('--L2_bn', type=float, default=0.000, metavar='', help='loss penalty scale to minimize bn params (shift and scale)')
parser.add_argument('--L2', type=float, default=0.000, metavar='', help='weight decay')
parser.add_argument('--L3', type=float, default=0.000, metavar='', help='L2 for param grads')
parser.add_argument('--L3_new', type=float, default=0.000, metavar='', help='L2 for param grads')
parser.add_argument('--L3_act', type=float, default=0.000, metavar='', help='L2 for act grads')
parser.add_argument('--L3_L2', dest='L3_L2', action='store_true', help='use L2 for gradients')
parser.add_argument('--L3_L1', dest='L3_L1', action='store_true', help='use L1 for gradients')
parser.add_argument('--L4', type=float, default=0.000, metavar='', help='L2 for param 2nd order grads')
parser.add_argument('--L2_1', type=float, default=0.000, metavar='', help='weight decay for layer 1')
parser.add_argument('--L2_2', type=float, default=0.000, metavar='', help='weight decay for layer 2')
parser.add_argument('--L2_3', type=float, default=0.000, metavar='', help='weight decay for layer 3')
parser.add_argument('--L2_4', type=float, default=0.000, metavar='', help='weight decay for layer 4')
parser.add_argument('--L2_act1', type=float, default=0.000, metavar='', help='weight decay for layer 1')
parser.add_argument('--L2_act2', type=float, default=0.000, metavar='', help='weight decay for layer 1')
parser.add_argument('--L2_act3', type=float, default=0.000, metavar='', help='weight decay for layer 1')
parser.add_argument('--L2_act4', type=float, default=0.000, metavar='', help='weight decay for layer 1')
parser.add_argument('--L2_bn_weight', type=float, default=0.000, metavar='', help='weight decay for batchnorm params')
parser.add_argument('--L2_bn_bias', type=float, default=0.000, metavar='', help='weight decay for batchnorm params')
parser.add_argument('--weight_init', type=str, default='default', metavar='', help='weight initialization (normal, uniform, ortho) for conv layers')
parser.add_argument('--weight_init_scale_conv', type=float, default=1.0, metavar='', help='weight initialization scaling factor (soft) for conv layers')
parser.add_argument('--weight_init_scale_fc', type=float, default=1.0, metavar='', help='weight initialization scaling factor (soft) for fc layers')
parser.add_argument('--w_scale', type=float, default=1.0, metavar='', help='weight distortion scaling factor')
parser.add_argument('--early_stop_after', type=int, default=100, metavar='', help='number of epochs to tolerate without improvement')
parser.add_argument('--var_name', type=str, default='', metavar='', help='variable to test')
parser.add_argument('--q_a', type=int, default=0, metavar='', help='activation quantization bits')
parser.add_argument('--q_w', type=int, default=0, metavar='', help='weight quantization bits')
parser.add_argument('--q_a1', type=int, default=0, metavar='', help='activation quantization bits')
parser.add_argument('--q_w1', type=int, default=0, metavar='', help='weight quantization bits')
parser.add_argument('--q_a2', type=int, default=0, metavar='', help='activation quantization bits')
parser.add_argument('--q_w2', type=int, default=0, metavar='', help='weight quantization bits')
parser.add_argument('--q_a3', type=int, default=0, metavar='', help='activation quantization bits')
parser.add_argument('--q_w3', type=int, default=0, metavar='', help='weight quantization bits')
parser.add_argument('--q_a4', type=int, default=0, metavar='', help='activation quantization bits')
parser.add_argument('--q_w4', type=int, default=0, metavar='', help='weight quantization bits')
parser.add_argument('--n_w', type=float, default=0, metavar='', help='weight noise to add during training')
parser.add_argument('--n_w1', type=float, default=0, metavar='', help='first layer weight noise to add during training')
parser.add_argument('--n_w2', type=float, default=0, metavar='', help='sescond layer weight noise to add during training')
parser.add_argument('--n_w3', type=float, default=0, metavar='', help='third layer weight noise to add during training')
parser.add_argument('--n_w4', type=float, default=0, metavar='', help='fourth layer weight noise to add during training')
parser.add_argument('--n_w_test', type=float, default=0, metavar='', help='weight noise to add during test')
parser.add_argument('--selected_weights', type=float, default=0, metavar='', help='reduce noise for this fraction (%%) of weights by selected_weights_noise_scale')
parser.add_argument('--noise_values', type=float, default=0, metavar='', help='reduce noise for this fraction (%%) of weights by selected_weights_noise_scale')
parser.add_argument('--selection_criteria', type=str, default=None, metavar='', help='how to choose important weights: "weight_magnitude", "grad_magnitude", "combined"')
parser.add_argument('--selected_weights_noise_scale', type=float, default=0, metavar='', help='multiply noise for selected_weights by this amount')
parser.add_argument('--scale_weights', type=float, default=0, metavar='', help='multiply weights by this amount')
parser.add_argument('--stochastic', type=float, default=0.5, metavar='', help='stochastic uniform noise to add before rounding during quantization')
parser.add_argument('--pctl', default=99.98, type=float, help='percentile to show when plotting')
parser.add_argument('--seed', type=int, default=None, metavar='', help='random seed')
parser.add_argument('--uniform_ind', type=float, default=0.0, metavar='', help='add random uniform in [-a, a] range to act x, where a is this value')
parser.add_argument('--uniform_dep', type=float, default=0.0, metavar='', help='multiply act x by random uniform in [x/a, ax] range, where a is this value')
parser.add_argument('--normal_ind', type=float, default=0.0, metavar='', help='add random normal with 0 mean and variance = a to each act x where a is this value')
parser.add_argument('--normal_dep', type=float, default=0.0, metavar='', help='add random normal with 0 mean and variance = ax to each act x where a is this value')
parser.add_argument('--gpu', default=None, type=str, help='GPU to use, if None use all')
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
print('\n\n****** You have chosen to seed training. This will turn on the CUDNN deterministic setting, and training will be SLOW! ******\n\n')
else:
torch.backends.cudnn.benchmark = True
if args.gpu is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
class Net(nn.Module):
def __init__(self, args=None):
super(Net, self).__init__()
self.create_dir = True
if args.train_act_max:
self.act_max1 = nn.Parameter(torch.Tensor([0]), requires_grad=True)
self.act_max2 = nn.Parameter(torch.Tensor([0]), requires_grad=True)
self.act_max3 = nn.Parameter(torch.Tensor([0]), requires_grad=True)
if args.train_w_max:
self.w_max1 = nn.Parameter(torch.Tensor([0]), requires_grad=True)
self.w_min1 = nn.Parameter(torch.Tensor([0]), requires_grad=True)
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
self.quantize1 = QuantMeasure(args.q_a1, stochastic=args.stochastic, pctl=args.pctl, max_value=1.0, debug=args.debug_quant)
self.quantize2 = QuantMeasure(args.q_a2, stochastic=args.stochastic, pctl=args.pctl, debug=args.debug_quant)
self.quantize3 = QuantMeasure(args.q_a3, stochastic=args.stochastic, pctl=args.pctl, max_value=args.act_max / (1. - args.dropout), debug=args.debug_quant)
self.quantize4 = QuantMeasure(args.q_a4, stochastic=args.stochastic, pctl=args.pctl, debug=args.debug_quant)
self.conv1 = NoisyConv2d(3, args.fm1 * args.width, kernel_size=args.fs, bias=args.use_bias, num_bits=0, num_bits_weight=args.q_w1,
noise=args.n_w1, test_noise=args.n_w_test, stochastic=args.stochastic, debug=args.debug_noise)
self.conv2 = NoisyConv2d(args.fm1 * args.width, args.fm2 * args.width, kernel_size=args.fs, bias=args.use_bias, num_bits=0, num_bits_weight=args.q_w2,
noise=args.n_w2, test_noise=args.n_w_test, stochastic=args.stochastic, debug=args.debug_noise)
self.linear1 = NoisyLinear(args.fm2 * args.width * args.fs * args.fs, args.fc * args.width, bias=args.use_bias, num_bits=0, num_bits_weight=args.q_w3,
noise=args.n_w3, test_noise=args.n_w_test, stochastic=args.stochastic, debug=args.debug_noise)
self.linear2 = NoisyLinear(args.fc * args.width, 10, bias=args.use_bias, num_bits=0, num_bits_weight=args.q_w4,
noise=args.n_w4, test_noise=args.n_w_test, stochastic=args.stochastic, debug=args.debug_noise)
if args.batchnorm:
self.bn1 = nn.BatchNorm2d(args.fm1 * args.width, track_running_stats=args.track_running_stats)
self.bn2 = nn.BatchNorm2d(args.fm2 * args.width, track_running_stats=args.track_running_stats)
if args.bn3:
self.bn3 = nn.BatchNorm1d(args.fc * args.width, track_running_stats=args.track_running_stats)
if args.bn4:
self.bn4 = nn.BatchNorm1d(10, track_running_stats=args.track_running_stats)
if args.weightnorm:
self.conv1 = nn.utils.weight_norm(nn.Conv2d(3, args.fm1 * args.width, kernel_size=args.fs, bias=args.use_bias))
self.conv2 = nn.utils.weight_norm(nn.Conv2d(args.fm1 * args.width, args.fm2 * args.width, kernel_size=args.fs, bias=args.use_bias))
self.linear1 = nn.utils.weight_norm(nn.Linear(args.fm2 * args.width * args.fs * args.fs, args.fc * args.width, bias=args.use_bias))
self.linear2 = nn.utils.weight_norm(nn.Linear(args.fc * args.width, 10, bias=args.use_bias))
if args.dropout > 0:
self.dropout = nn.Dropout(p=args.dropout)
def forward(self, input, epoch=0, i=0, s=0, acc=0.0):
'''
if not self.training and i == 0:
#pass
#conv1_out = 200 * conv1_out
self.conv1.weight.data = 20. * self.conv1.weight.data
if i == 0 and self.training and epoch != 0:
#pass
self.conv1.weight.data = self.conv1.weight.data / 20.
'''
arrays = []
if args.q_a1 > 0:
self.input = self.quantize1(input)
else:
self.input = input
if epoch == 0 and i == 0 and s == 0 and self.training:
print('\ninput shape:', self.input.shape)
self.conv1_no_bias = self.conv1(self.input)
if args.plot or args.write:
get_layers(arrays, self.input, self.conv1.weight, self.conv1_no_bias, stride=1, padding=0, layer='conv', basic=args.plot_basic, debug=args.debug, block_size=args.block_size)
if args.merge_bn:
self.bias1 = self.bn1.bias.view(1, -1, 1, 1) - self.bn1.running_mean.data.view(1, -1, 1, 1) * self.bn1.weight.data.view(1, -1, 1, 1) / torch.sqrt(self.bn1.running_var.data.view(1, -1, 1, 1) + 0.0000001)
self.conv1_ = self.conv1_no_bias + self.bias1
if args.plot or args.write:
arrays.append([self.bias1.half().detach().cpu().numpy()])
else:
self.conv1_ = self.conv1_no_bias
if epoch == 0 and i == 0 and s == 0 and self.training:
print('conv1 out shape:', self.conv1_.shape)
if args.current1 > 0 or args.distort_act:
conv1_out = add_noise_calculate_power(self, args, arrays, self.input, self.conv1.weight, self.conv1_, layer_type='conv', i=i, layer_num=0, merged_dac=args.merged_dac)
else:
conv1_out = self.conv1_
pool1 = self.pool(conv1_out)
if args.batchnorm and not args.merge_bn:
bn1 = self.bn1(pool1)
self.pool1_out = bn1
else:
self.pool1_out = pool1
if args.plot or args.write:
arrays.append([self.pool1_out.half().detach().cpu().numpy()])
self.relu1_ = self.relu(self.pool1_out)
if epoch == 0 and i == 0 and s == 0 and self.training:
print('relu1 out shape:', self.relu1_.shape)
if args.act_max1 > 0:
if args.train_act_max:
self.relu1_clipped = torch.where(self.relu1_ > self.act_max1, self.act_max1, self.relu1_) #fastest
else:
self.relu1_clipped = torch.clamp(self.relu1_, max=args.act_max1)
self.relu1 = self.relu1_clipped
else:
self.relu1 = self.relu1_
if args.L3_act > 0:
self.relu1_.retain_grad()
if args.train_act_max:
self.relu1_clipped.retain_grad()
if args.L3_act > 0:
self.relu1.retain_grad()
if args.train_w_max:
self.w_max1.retain_grad()
self.w_min1.retain_grad()
if args.dropout_conv > 0:
self.relu1 = self.dropout(self.relu1)
if args.q_a2 > 0:
self.relu1 = self.quantize2(self.relu1)
self.conv2_no_bias = self.conv2(self.relu1)
if args.plot or args.write:
get_layers(arrays, self.relu1, self.conv2.weight, self.conv2_no_bias, stride=1, padding=0, layer='conv', basic=args.plot_basic, debug=args.debug, block_size=args.block_size)
if args.merge_bn:
self.bias2 = self.bn2.bias.view(1, -1, 1, 1) - self.bn2.running_mean.data.view(1, -1, 1, 1) * self.bn2.weight.data.view(1, -1, 1, 1) / torch.sqrt(self.bn2.running_var.data.view(1, -1, 1, 1) + 0.0000001)
self.conv2_ = self.conv2_no_bias + self.bias2
if args.plot or args.write:
arrays.append([self.bias2.half().detach().cpu().numpy()])
else:
self.conv2_ = self.conv2_no_bias
if epoch == 0 and i == 0 and s == 0 and self.training:
print('conv2 out shape:', self.conv2_.shape)
if args.current2 > 0 or args.distort_act:
conv2_out = add_noise_calculate_power(self, args, arrays, self.relu1, self.conv2.weight, self.conv2_, layer_type='conv', i=i, layer_num=1, merged_dac=False)
else:
conv2_out = self.conv2_
pool2 = self.pool(conv2_out)
if args.batchnorm and not args.merge_bn:
bn2 = self.bn2(pool2)
#print('\n\nbn2 weights:\n', self.bn2.weight, '\n\nbn2 biases:\n', self.bn2.bias, '\n\nbn2 running mean:\n', self.bn2.running_mean,
#'\n\nbn2 running var:\n', self.bn2.running_var)
self.pool2_out = bn2
else:
self.pool2_out = pool2
if args.plot or args.write:
arrays.append([self.pool2_out.half().detach().cpu().numpy()])
self.relu2_ = self.relu(self.pool2_out)
if epoch == 0 and i == 0 and s == 0 and self.training:
print('relu2 out shape:', self.relu2_.shape)
if args.act_max2 > 0:
if args.train_act_max:
self.relu2_clipped = torch.where(self.relu2_ > self.act_max2, self.act_max2, self.relu2_)
else:
self.relu2_clipped = torch.clamp(self.relu2_, max=args.act_max2)
self.relu2 = self.relu2_clipped
else:
self.relu2 = self.relu2_
if args.L3_act > 0:
self.relu2.retain_grad()
if args.dropout > 0:
self.relu2 = self.dropout(self.relu2)
self.relu2 = self.relu2.view(self.relu2.size(0), -1)
if epoch == 0 and i == 0 and s == 0 and self.training:
print('relu2 out shape:', self.relu2.shape)
if args.q_a3 > 0:
self.relu2 = self.quantize3(self.relu2)
self.linear1_no_bias = self.linear1(self.relu2)
if args.plot or args.write:
get_layers(arrays, self.relu2, self.linear1.weight, self.linear1_no_bias, layer='linear', basic=args.plot_basic, debug=args.debug, block_size=args.block_size)
if args.merge_bn:
self.bias3 = self.bn3.bias.view(1, -1) - self.bn3.running_mean.data.view(1, -1) * self.bn3.weight.data.view(1, -1) / torch.sqrt(self.bn3.running_var.data.view(1, -1) + 0.0000001)
self.linear1_ = self.linear1_no_bias + self.bias3
if args.plot or args.write:
arrays.append([self.bias3.half().detach().cpu().numpy()])
else:
self.linear1_ = self.linear1_no_bias
if args.current3 > 0 or args.distort_act:
linear1_out = add_noise_calculate_power(self, args, arrays, self.relu2, self.linear1.weight, self.linear1_, layer_type='linear', i=i, layer_num=2, merged_dac=args.merged_dac)
else:
linear1_out = self.linear1_
if args.batchnorm and args.bn3 and not args.merge_bn:
self.linear1_out = self.bn3(linear1_out)
else:
self.linear1_out = linear1_out
if args.plot or args.write:
arrays.append([self.linear1_out.half().detach().cpu().numpy()])
self.relu3_ = self.relu(self.linear1_out)
if epoch == 0 and i == 0 and s == 0 and self.training:
print('relu3 out shape:', self.relu3_.shape, '\n')
if args.act_max3 > 0:
if args.train_act_max:
self.relu3_clipped = torch.where(self.relu3_ > self.act_max3, self.act_max3, self.relu3_)
else:
self.relu3_clipped = torch.clamp(self.relu3_, max=args.act_max3)
self.relu3 = self.relu3_clipped
else:
self.relu3 = self.relu3_
if args.L3_act > 0:
self.relu3.retain_grad()
if args.dropout > 0:
self.relu3 = self.dropout(self.relu3)
if args.q_a4 > 0:
self.relu3 = self.quantize4(self.relu3)
self.linear2_no_bias = self.linear2(self.relu3)
if args.plot or args.write:
get_layers(arrays, self.relu3, self.linear2.weight, self.linear2_no_bias, layer='linear', basic=args.plot_basic, debug=args.debug, block_size=args.block_size)
if args.bn4 and args.merge_bn:
if self.training:
print('\n\n************ Merging BatchNorm during training! **********\n\n')
raise(SystemExit)
self.bias4 = self.bn4.bias.view(1, -1) - self.bn4.running_mean.data.view(1, -1) * self.bn4.weight.data.view(1, -1) / torch.sqrt(self.bn4.running_var.data.view(1, -1) + 0.0000001)
self.linear2_ = self.linear2_no_bias + self.bias4
if args.plot or args.write:
arrays.append([self.bias4.half().detach().cpu().numpy()])
else:
self.linear2_ = self.linear2_no_bias
self.bias4 = torch.Tensor([0])
if args.current4 > 0 or args.distort_act:
linear2_out = add_noise_calculate_power(self, args, arrays, self.relu3, self.linear2.weight, self.linear2_, layer_type='linear', i=i, layer_num=3, merged_dac=False)
else:
linear2_out = self.linear2_
if args.batchnorm and args.bn4 and not args.merge_bn:
self.linear2_out = self.bn4(linear2_out)
else:
self.linear2_out = linear2_out
if args.plot or args.write:
arrays.append([self.linear2_out.half().detach().cpu().numpy()])
if (args.plot and s == 0 and i == 0 and epoch in [0, 1, 5, 10, 50, 100, 150, 249] and self.training) or args.write or (args.resume is not None and args.plot):
if self.create_dir:
utils.saveargs(args)
self.create_dir = False
if (epoch == 0 and i == 0) or args.plot:
print('\n\n\nBatch size', list(self.input.size())[0], '\n\n\n')
if args.plot_basic:
names = ['input', 'weights', 'vmm']
else:
#names = ['input', 'weights', 'vmm', 'vmm diff', 'vmm blocked', 'vmm diff blocked', 'weight sums diff', 'weight sums diff blocked', 'source']
if args.block_size is None:
names = ['input', 'weights', 'vmm', 'vmm diff', 'source_full', 'source 128', 'source 64', 'source_32',
'source full diff', 'source 128 diff', 'source 64 diff', 'source 32 diff']
else:
if args.block_size == 0:
block_size = 'full'
else:
block_size = str(args.block_size)
names = ['input', 'weights', 'vmm', 'vmm diff', 'source ' + block_size, 'source diff ' + block_size]
args.tag += '_full'
if args.merge_bn:
names.append('bias')
args.tag += '_merged_bn'
if args.plot_noise:
names.extend(['sigmas', 'noise', 'noise/range'])
args.tag += '_noise'
if args.plot_power:
names.append('power')
args.tag += '_power'
if args.normalize:
args.tag += '_norm'
args.tag += '_bs_' + str(args.batch_size)
names.append('pre-activation')
print('\n\nPreparing arrays for plotting or writing:\n')
layers = []
layer = []
print('\n\nlen(arrays) // len(names):', len(arrays), len(names), len(arrays) // len(names), '\n\n')
num_layers = len(arrays) // len(names)
for k in range(num_layers):
print('layer', k, names)
for j in range(len(names)):
# print('\t', names[j])
layer.append([arrays[len(names) * k + j][0]])
layers.append(layer)
layer = []
info = []
inputs = []
for n, p in model.named_parameters():
if 'weight' in n and ('conv' in n or 'linear' in n):
inputs.append(np.prod(p.shape[1:]))
for idx in range(len(inputs)):
temp = []
temp.append('{:d} inputs '.format(inputs[idx]))
if args.plot_power:
temp.append('{:.2f}mW '.format(self.power[idx][0]))
info.append(temp)
if args.plot:
print('\nPlotting {}\n'.format(names))
var_ = ''
var_name = args.var_name
plot_layers(num_layers=len(layers), models=[args.checkpoint_dir], epoch=epoch, i=i, layers=layers,
names=names, var=var_name, vars=[var_], infos=info, pctl=args.pctl, acc=acc, tag=args.tag, normalize=args.normalize)
if args.write and not self.training:
#scipy.io.savemat('chip_plots/convnet_first_layer_q4_act_1_acc_{:.2f}.mat'.format(acc), mdict={names[1]: arrays[1], names[2]: arrays[2]})
np.save(args.checkpoint_dir + 'layers.npy', np.array(layers))
print('\n\nnumpy arrays saved to', args.checkpoint_dir + 'layers.npy', '\n\n')
np.save(args.checkpoint_dir + 'array_names.npy', np.array(names))
print('array names saved to', args.checkpoint_dir + 'array_names.npy', '\n\n')
np.save(args.checkpoint_dir + 'input_sizes.npy', np.array(inputs))
print('input sizes saved to', args.checkpoint_dir + 'input_sizes.npy', '\n\n')
if args.plot_power:
np.save(args.checkpoint_dir + 'layer_power.npy', np.array([x[0] for x in self.power]))
print('layers power saved to', args.checkpoint_dir + 'layers_power.npy', '\n\n')
if (args.plot and args.resume is not None) or args.write:
scipy.io.savemat('chip_plots/convnet_first_layer_q4_act_1_acc_{:.2f}.mat'.format(acc), mdict={names[1]: arrays[1], names[2]: arrays[2]})
raise (SystemExit)
return self.linear2_out
np.set_printoptions(precision=4, linewidth=120, suppress=True)
train_inputs, train_labels, test_inputs, test_labels = utils.load_cifar(args)
num_train_batches = 50000 // args.batch_size
num_test_batches = 10000 // args.batch_size
if args.LR_1 == 0:
args.LR_1 = args.LR
if args.LR_2 == 0:
args.LR_2 = args.LR
if args.LR_3 == 0:
args.LR_3 = args.LR
if args.LR_4 == 0:
args.LR_4 = args.LR
currents = {}
if args.var_name == 'current':
current_vars = [1, 3, 5, 10, 20, 50, 100]
else:
current_vars = [args.current]
for current in current_vars:
print('\n\n****************** Current {} ********************\n\n'.format(current))
currents[current] = []
args.current = current
if args.current > 0:
args.current1 = args.current2 = args.current3 = args.current4 = args.current
if args.split:
args.test_current = args.current
args.train_current = 0
#args.train_current = current * 0.8
args.current1 = args.current2 = args.current3 = args.current4 = args.train_current
args.layer_currents = [args.current1, args.current2, args.current3, args.current4]
if args.distort_w_test:
if args.current1 > 0:
margin1 = args.w_scale * 0.1 / args.current1
margin2 = args.w_scale * 0.1 / args.current2
margin3 = args.w_scale * 0.1 / args.current3
margin4 = args.w_scale * 0.1 / args.current4
else:
margin1 = args.w_scale * 0.1
margin2 = args.w_scale * 0.1
margin3 = args.w_scale * 0.1
margin4 = args.w_scale * 0.1
results = {}
results_dist = {}
power_results = {}
noise_results = {}
act_sparsity_results = {}
w_sparsity_results = {}
if args.var_name == 'w_max1':
var_list = [0.05, 0.1, 0.3, 0.5, 1]
#var_list = [0, 2, 4, 8]
var_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1]
elif args.var_name == 'act_max':#'act_max' in args.var_name:
#var_list = [0.8, 1.2, 1.5, 2, 2.5, 3, 5, 10, 0]
var_list = [0, 0.2, 1, 5, 20]
var_list = [0.25, 1, 2, 4, 10, 0]
elif args.var_name == 'act_max1':#'act_max' in args.var_name:
#var_list = [0.8, 1.2, 1.5, 2, 2.5, 3, 5, 10, 0]
var_list = [0, 0.2, 1, 5, 20]
var_list = [0.5, 1, 1.5, 2, 2.5, 3, 4, 5]
elif args.var_name == 'act_max2':#'act_max' in args.var_name:
#var_list = [0.8, 1.2, 1.5, 2, 2.5, 3, 5, 10, 0]
var_list = [0, 0.2, 1, 5, 20]
var_list = [0.5, 1, 2, 3, 4, 5, 10]
elif args.var_name == 'act_max3':#'act_max' in args.var_name:
#var_list = [0.8, 1.2, 1.5, 2, 2.5, 3, 5, 10, 0]
var_list = [0, 0.2, 1, 5, 20]
var_list = [0.5, 1, 2, 3, 4, 5, 10]
elif args.var_name == 'LR':
#var_list = [0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1]
#var_list = [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.003, 0.005, 0.01, 0.02]
var_list = [0.01, 0.015, 0.02, 0.025, 0.03, 0.035]
var_list = [0.001, 0.002, 0.005, 0.01, 0.02, 0.04]
var_list = [0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1]
var_list = [0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 7, 10]
var_list = [0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.002, 0.003, 0.004, 0.006, 0.008, 0.01]
elif args.var_name == 'L2_act_max':
var_list = [0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05]
elif args.var_name == 'uniform_ind':
#var_list = [0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15]
var_list = [x/current for x in [0.12, 0.14, 0.16]]
elif args.var_name == 'uniform_dep':
var_list = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] #0.5, 0.6, and 1.5-3.0
elif args.var_name == 'normal_ind':
#var_list = [0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1]
var_list = [x/current for x in [0.05, 0.07, 0.09]]
elif args.var_name == 'normal_dep':
#var_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
var_list = [x/current for x in [0.3, 0.4, 0.5]]
elif args.var_name == 'L2_1':
var_list = [0.0, 0.0002, 0.0005, 0.001, 0.002, 0.003, 0.005]
elif args.var_name == 'L2':
var_list = [0.00005, 0.0001, 0.0002, 0.0003, 0.0005, 0.001]
var_list = [0, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0008, 0.001, 0.0012, 0.0015, 0.002]
var_list = [0, 0.00005, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.001]
var_list = [0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.008, 0.01, 0.02, 0.03, 0.05]
var_list = [0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 7, 10]
var_list = [0, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4]
var_list = [0, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4]
elif args.var_name == 'L1':
var_list = [0, 1e-7, 2e-7, 5e-7, 1e-6, 2e-6, 5e-6, 1e-5]#, 3e-5, 2e-5, 5e-5, 0.0001]
#var_list = [1e-5, 2e-5, 5e-5, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 1]
var_list = [2e-6, 4e-6, 6e-6, 8e-6, 1e-5, 2e-5, 3e-5]
elif args.var_name == 'L2_2':
var_list = [0.0, 0.00001, 0.00002, 0.00003, 0.00005, 0.0001]#, 0.0002, 0.0003, 0.0005, 0.001]
elif args.var_name == 'L3':
#var_list = [0.1, 0.2, 0.5, 1, 2, 3, 5] # currents 1,3,5,10,20,50,100: 30, 20, 10, 1, 0.2, 0.05, 0.01
#var_list = [x/args.test_current for x in [10, 20, 50]]
var_list = [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 30, 50]
var_list = [0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5]
var_list = [0.0005, 0.001, 0.002, 0.003, 0.005, 0.007, 0.01, 0.015, 0.02]
#var_list = [0.02, 0.025, 0.03, 0.035, 0.04, 0.05, 0.06, 0.07, 0.08]
var_list = [0.001, 0.0025, 0.005, 0.0075, 0.01, 0.015, 0.02, 0.025, 0.03]
var_list = [0, 0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.01]
var_list = [5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3]#0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.01]
var_list = [0, 0.0005, 0.001, 0.002, 0.003, 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.5, 1]
elif args.var_name == 'L3_new':
var_list = [0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1]#1, 2, 3, 5, 10, 20, 30]
elif args.var_name == 'L3_act':
#var_list = [500000, 1000000, 2000000, 4000000, 10000000, 20000000]
#var_list = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20]
var_list = [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2]
elif args.var_name == 'L4':
var_list = [0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5]
elif args.var_name == 'momentum':
var_list = [0., 0.5, 0.7, 0.8, 0.85, 0.9, 0.95, 0.97, 0.99]
elif args.var_name == 'grad_clip':
#var_list = [0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2, 5, 0]
var_list = [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2, 5, 0]
var_list = [0.005, 0.05, 0.5, 2, 0]
elif args.var_name == 'dropout':
var_list = [0, 0.05, 0.1, 0.15, 0.2, 0.25]
var_list = [0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5]
elif args.var_name == 'width':
var_list = [1, 2, 4]
elif args.var_name == 'noise':
var_list = [0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5]
elif args.var_name == 'n_w':
var_list = [0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5]
var_list = [0, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]
elif args.var_name == 'selected_weights':
var_list = [0, 1, 2, 3, 5, 10, 20, 30]
var_list = [2, 5, 10]
acc_lists = []
elif args.var_name == 'L2_w_max':
var_list = [0.1] #0.1 works fine for current=10 and init_w_max=0.2, no L2, and no act_max: w_min=-0.16, w_max=0.18, Acc 78.72 (epoch 225), power 3.45, noise 0.04 (0.02, 0.03, 0.04, 0.08)
else:
var_list = [' ']
for var in var_list:
if args.var_name != '':
print('\n\n********** Setting {} to {} **********\n\n'.format(args.var_name, var))
setattr(args, args.var_name, var)
if args.q_a > 0:
args.q_a1 = args.q_a2 = args.q_a3 = args.q_a4 = args.q_a
if args.L2 > 0:
#args.L2_1 = args.L2_2 = args.L2_3 = args.L2_4 = args.L2
#args.L2_1 = args.L2_2 = args.L2_3 = args.L2_4 = args.L2 * math.sqrt(args.width)
if args.q_a2 == 1:
args.L2_1 = args.L2_2 = args.L2_3 = args.L2_4 = args.L2 * args.width
else:
args.L2_1 = args.L2_2 = args.L2_3 = args.L2_4 = args.L2
print('\n\nSetting L2 in all layers to {}\n\n'.format(args.L2_1))
if args.L1 > 0:
args.L1_1 = args.L1_2 = args.L1_3 = args.L1_4 = args.L1
if args.dropout > 0 and args.var_name != 'dropout':
#pass
#args.dropout = 0.1 * args.width
'''
if args.q_a2 == 0:
args.dropout = args.width * 4 / 40.
else:
args.dropout = args.width * args.q_a2 / 40.
'''
print('\n\nSetting dropout in fc layers to {}\n\n'.format(args.dropout))
if args.act_max > 0:
print('\n\nSetting act clipping in all layers to {}\n\n'.format(args.act_max))
args.act_max1 = args.act_max2 = args.act_max3 = args.act_max
if args.w_max > 0:
args.w_max1 = args.w_max2 = args.w_max3 = args.w_max4 = args.w_max
if args.n_w > 0:
print('\n\nSetting weight noise in all layers to {}\n\n'.format(int(args.n_w*100)))
args.n_w1 = args.n_w2 = args.n_w3 = args.n_w4 = args.n_w
if args.q_w > 0:
print('\n\nQuantizing weights in all layers to {} bits\n\n'.format(int(args.q_w)))
args.q_w1 = args.q_w2 = args.q_w3 = args.q_w4 = args.q_w
if args.var_name == "LR":
args.LR_1 = args.LR_2 = args.LR_3 = args.LR_4 = args.LR
results[var] = []
results_dist[var] = []
te_acc_dists = []
power_results[var] = []
noise_results[var] = []
act_sparsity_results[var] = []
w_sparsity_results[var] = []
best_accuracies = []
best_accuracies_dist = []
best_powers = []
best_noises = []
best_act_sparsities = []
best_w_sparsities = []
te_acc_dist_string = ''
avg_te_acc_dist = 0
create_dir = True
if args.var_name != '':
tag = args.tag + args.var_name + '-' + str(var) + '_'
else:
tag = args.tag
args.checkpoint_dir = os.path.join('results/', tag + 'current-' + str(args.current1) + '-' + str(args.current2) + '-' + str(args.current3) + '-' + str(args.current4) +
'_L3-' + str(args.L3) + '_L3_act-' + str(args.L3_act) + '_L2-' + str(args.L2_1) + '-' + str(args.L2_2) + '-' + str(args.L2_3) + '-' + str(args.L2_4) +
'_actmax-' + str(args.act_max1) + '-' + str(args.act_max2) + '-' + str(args.act_max3) +
'_w_max1-' + str(args.w_max1) + '-' + str(args.w_max2) + '-' + str(args.w_max3) + '-' + str(args.w_max4) + '_bn-' + str(args.batchnorm) + '_LR-' + str(args.LR) + '_' +
'grad_clip-' + str(args.grad_clip) + '_' +
datetime.now().strftime('%Y-%m-%d_%H-%M-%S/'))
for s in range(args.num_sims):
best_accuracy = 0
best_accuracy_dist = 0
best_epoch = 0
best_power = 0
best_nsr = 0
best_input_sparsity = 0
avg_w_sparsity = 0
best_w_sparsity = 0
init_epoch = 0
te_acc = 0
best_power_string = ''
best_noise_string = ''
best_input_sparsity_string = ''
best_w_sparsity_string = ''
w_input_sparsity_string = ''
input_sparsity_string = ''
noise_string = ''
power_string = ''
saved = False
if args.resume is None:
model = Net(args=args)
utils.init_model(model, args, s)
model = model.cuda() #do this before constructing optimizer!!
if args.fp16:
model = model.half()
if args.keep_bn_fp32:
for layer in model.modules():
if isinstance(layer, nn.BatchNorm2d) or isinstance(layer, nn.BatchNorm1d):
layer.float()
if args.train_w_max:
print('\n\nSetting w_min1 to {:.2f} and w_max1 to {:.2f}\n\n'.format(model.w_min1.item(), model.w_max1.item()))
if args.train_w_max:
w_max_values = []
w_min_values = []
if args.train_act_max:
act_max1_values = []
act_max2_values = []
act_max3_values = []
else:
print('\n\nLoading model from saved checkpoint at\n{}\n\n'.format(args.resume))
args.checkpoint_dir = '/'.join(args.resume.split('/')[:-1]) + '/'
model = Net(args=args)
model = model.cuda()
saved_model = torch.load(args.resume) #ignore unnecessary parameters
for saved_name, saved_param in saved_model.items():
if args.debug:
print(saved_name)
for name, param in model.named_parameters():
if name == saved_name:
if args.debug:
print('\tmatched, copying...')
param.data = saved_param.data
if 'running_min' in saved_name or 'running_max' in saved_name:
continue
elif 'running' in saved_name and args.track_running_stats: #batchnorm stats are not in named_parameters
if args.debug:
print('\tmatched, copying...')
m = model.state_dict()