forked from babbu3682/SMART-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
312 lines (251 loc) · 16.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import argparse
import datetime
import numpy as np
import time
import torch
import json
import random
from pathlib import Path
# import functools
import utils
from create_model import create_model
from create_datasets.prepare_datasets import build_dataset, build_dataset_imbalance
from engine import *
from losses import Uptask_Loss, Downtask_Loss
from optimizers import create_optim
from lr_schedulers import create_scheduler
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_args_parser():
parser = argparse.ArgumentParser('SMART-Net Framework Train and Test script', add_help=False)
# Dataset parameters
parser.add_argument('--data-folder-dir', default="/workspace/sunggu/1.Hemorrhage/SMART-Net/datasets/samples", type=str, help='dataset folder dirname')
parser.add_argument('--imbalance-dataset', type=str2bool, default="False", help='sampling the batch considering imbalance-dataset')
# Model parameters
parser.add_argument('--model-name', default='SMART_Net', type=str, help='model name')
# DataLoader setting
parser.add_argument('--batch-size', default=20, type=int)
parser.add_argument('--num-workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
# Optimizer parameters
parser.add_argument('--optimizer', default='adam', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adam"')
# Learning rate and schedule and Epoch parameters
parser.add_argument('--lr-scheduler', default='poly_lr', type=str, metavar='lr_scheduler', help='lr_scheduler (default: "poly_learning_rate"')
parser.add_argument('--epochs', default=1000, type=int, help='Upstream 1000 epochs, Downstream 500 epochs')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N', help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
# Setting Upstream, Downstream task
parser.add_argument('--training-stream', default='Upstream', choices=['Upstream', 'Downstream'], type=str, help='training stream')
# DataParrel or Single GPU train
parser.add_argument('--multi-gpu-mode', default='DataParallel', choices=['DataParallel', 'Single'], type=str, help='multi-gpu-mode')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--cuda-device-order', default='PCI_BUS_ID', type=str, help='cuda_device_order')
parser.add_argument('--cuda-visible-devices', default='0', type=str, help='cuda_visible_devices')
# Option
parser.add_argument('--gradual-unfreeze', type=str2bool, default="TRUE", help='gradual unfreezing the encoder for Downstream Task')
# Continue Training
parser.add_argument('--resume', default='', help='resume from checkpoint') # '' = None
parser.add_argument('--from-pretrained', default='', help='pre-trained from checkpoint')
parser.add_argument('--load-weight-type', default='', help='the types of loading the pre-trained weights')
# Validation setting
parser.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)')
# Prediction and Save setting
parser.add_argument('--output-dir', default='', help='path where to save, empty for no saving')
return parser
# Fix random seeds for reproducibility
random_seed = 42
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def main(args):
utils.print_args(args)
device = torch.device(args.device)
print("Loading dataset ....")
if args.imbalance_dataset:
# for highly imbalanced datasets. However, It is slow training...
dataset_train_pos, collate_fn_train_pos = build_dataset_imbalance(mode='pos', args=args)
dataset_train_neg, collate_fn_train_neg = build_dataset_imbalance(mode='neg', args=args)
dataset_valid, collate_fn_valid = build_dataset(is_train=False, args=args)
data_loader_train_pos = torch.utils.data.DataLoader(dataset_train_pos, batch_size=args.batch_size//2, num_workers=args.num_workers//2, shuffle=True, pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_fn_train_pos)
data_loader_train_neg = torch.utils.data.DataLoader(dataset_train_neg, batch_size=args.batch_size//2, num_workers=args.num_workers//2, shuffle=True, pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_fn_train_neg)
data_loader_train = (data_loader_train_pos, data_loader_train_neg)
data_loader_valid = torch.utils.data.DataLoader(dataset_valid, batch_size=1, num_workers=args.num_workers, shuffle=False, pin_memory=args.pin_mem, drop_last=False, collate_fn=collate_fn_valid)
else :
# for general balanced datasets
dataset_train, collate_fn_train = build_dataset(is_train=True, args=args)
dataset_valid, collate_fn_valid = build_dataset(is_train=False, args=args)
data_loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_fn_train)
data_loader_valid = torch.utils.data.DataLoader(dataset_valid, batch_size=1, num_workers=args.num_workers, shuffle=False, pin_memory=args.pin_mem, drop_last=False, collate_fn=collate_fn_valid)
# Select Loss
if args.training_stream == 'Upstream':
criterion = Uptask_Loss(name=args.model_name)
else :
criterion = Downtask_Loss(name=args.model_name)
# Select Model
print(f"Creating model : {args.model_name}")
print(f"Pretrained model: {args.from_pretrained}")
model = create_model(stream=args.training_stream, name=args.model_name)
print(model)
# Optimizer & LR Scheduler
optimizer = create_optim(name=args.optimizer, model=model, args=args)
lr_scheduler = create_scheduler(name=args.lr_scheduler, optimizer=optimizer, args=args)
# Resume
if args.resume:
print("Loading... Resume")
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
try:
log_path = os.path.dirname(args.resume)+'/log.txt'
lines = open(log_path,'r').readlines()
val_loss_list = []
for l in lines:
exec('log_dict='+l.replace('NaN', '0'))
val_loss_list.append(log_dict['valid_loss'])
print("Epoch: ", np.argmin(val_loss_list), " Minimum Val Loss ==> ", np.min(val_loss_list))
except:
pass
# Optimizer Error fix...!
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
# Using the pre-trained feature extract's weights
if args.from_pretrained:
# ImageNet pre-trained from torchvision, Reference: https://github.com/pytorch/vision
if args.from_pretrained.split('/')[-1] == '[UpTASK]ResNet50_ImageNet.pth':
print("Loading... Pre-trained")
model_dict = model.state_dict()
print("Check Before weight = ", model_dict['encoder.conv1.weight'].std().item())
checkpoint_state_dict = torch.load(args.from_pretrained, map_location='cpu')
checkpoint_state_dict['conv1.weight'] = checkpoint_state_dict['conv1.weight'].sum(1, keepdim=True) # ImageNet pre-trained is 3ch, so we have to change to 1 ch (using sum weight) Reference: https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/encoders/_utils.py#L27
corrected_dict = {'encoder.'+k: v for k, v in checkpoint_state_dict.items()}
filtered_dict = {k: v for k, v in corrected_dict.items() if (k in model_dict) and ('encoder.' in k)}
model_dict.update(filtered_dict)
model.load_state_dict(model_dict)
print("Check After weight = ", model.state_dict()['encoder.conv1.weight'].std().item())
else :
print("Loading... Pre-trained")
model_dict = model.state_dict()
print("Check Before weight = ", model_dict['encoder.conv1.weight'].std().item())
checkpoint = torch.load(args.from_pretrained, map_location='cpu')
if args.load_weight_type == 'full':
model.load_state_dict(checkpoint['model_state_dict'])
elif args.load_weight_type == 'encoder':
filtered_dict = {k: v for k, v in checkpoint['model_state_dict'].items() if (k in model_dict) and ('encoder.' in k)}
model_dict.update(filtered_dict)
model.load_state_dict(model_dict)
print("Check After weight = ", model.state_dict()['encoder.conv1.weight'].std().item())
# Multi GPU
if args.multi_gpu_mode == 'DataParallel':
model = torch.nn.DataParallel(model)
model.to(device)
elif args.multi_gpu_mode == 'Single':
model.to(device)
else :
raise Exception('Error...! args.multi_gpu_mode')
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
# Whole LOOP
for epoch in range(args.start_epoch, args.epochs):
# Train & Valid
if args.training_stream == 'Upstream':
if args.model_name == 'Up_SMART_Net':
if args.imbalance_dataset:
train_stats = train_Up_Imbalance_SMART_Net(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
else :
train_stats = train_Up_SMART_Net(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
## Dual
elif args.model_name == 'Up_SMART_Net_Dual_CLS_SEG':
train_stats = train_Up_SMART_Net_Dual_CLS_SEG(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net_Dual_CLS_SEG(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
elif args.model_name == 'Up_SMART_Net_Dual_CLS_REC':
train_stats = train_Up_SMART_Net_Dual_CLS_REC(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net_Dual_CLS_REC(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
elif args.model_name == 'Up_SMART_Net_Dual_SEG_REC':
train_stats = train_Up_SMART_Net_Dual_SEG_REC(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net_Dual_SEG_REC(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
## Single
elif args.model_name == 'Up_SMART_Net_Single_CLS':
train_stats = train_Up_SMART_Net_Single_CLS(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net_Single_CLS(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
elif args.model_name == 'Up_SMART_Net_Single_SEG':
train_stats = train_Up_SMART_Net_Single_SEG(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net_Single_SEG(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
elif args.model_name == 'Up_SMART_Net_Single_REC':
train_stats = train_Up_SMART_Net_Single_REC(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Up_SMART_Net_Single_REC(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
else :
raise KeyError("Wrong model name `{}`".format(args.model_name))
elif args.training_stream == 'Downstream':
if args.model_name == 'Down_SMART_Net_CLS':
train_stats = train_Down_SMART_Net_CLS(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size, args.gradual_unfreeze)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Down_SMART_Net_CLS(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
elif args.model_name == 'Down_SMART_Net_SEG':
train_stats = train_Down_SMART_Net_SEG(model, criterion, data_loader_train, optimizer, device, epoch, args.print_freq, args.batch_size, args.gradual_unfreeze)
print("Averaged train_stats: ", train_stats)
valid_stats = valid_Down_SMART_Net_SEG(model, criterion, data_loader_valid, device, args.print_freq, args.batch_size)
print("Averaged valid_stats: ", valid_stats)
else :
raise KeyError("Wrong model name `{}`".format(args.model_name))
else :
raise KeyError("Wrong training stream `{}`".format(args.training_stream))
# Save & Prediction png
checkpoint_paths = args.output_dir + '/epoch_' + str(epoch) + '_checkpoint.pth'
torch.save({
'model_state_dict': model.state_dict() if args.multi_gpu_mode == 'Single' else model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_paths)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'valid_{k}': v for k, v in valid_stats.items()},
'epoch': epoch}
if args.output_dir:
with open(args.output_dir + "/log.txt", "a") as f:
f.write(json.dumps(log_stats) + "\n")
lr_scheduler.step(epoch)
# Finish
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SMART-Net Framework training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
os.environ["CUDA_DEVICE_ORDER"] = args.cuda_device_order
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda_visible_devices
main(args)