forked from chokyungjin/MuSiC-ViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
246 lines (192 loc) · 8.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import sys
import random
import numpy as np
from config import parse_arguments
from datasets import ClassPairDataset
from models.siamese_CMT_ACM import siamese_CMT_ACM
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from tensorboardX import SummaryWriter
import time
import pathlib
from datetime import datetime
import matplotlib.pyplot as plt
from torchsummary import summary
import torch.utils.data
from torchvision.utils import save_image
from tqdm import tqdm
def calculate_parameters(model):
return sum(param.numel() for param in model.parameters())/1000000.0
def ACM_loss(logit):
return 2-(2*logit)
def train(args, data_loader, test_loader_in, model, grad_cam ,optimizer, device, writer, log_dir, checkpoint_dir):
model.train()
correct = 0
total = 0
overall_iter = args.start_iter
print("[*] start Epoch : " , args.start_epoch)
for epoch in range(args.start_epoch, args.epochs):
iter_ = 0
running_loss = 0
running_matching = 0
running_change = 0
running_disease = 0
for base, fu, change_labels, disease_labels, _ in iter(data_loader):
base = base.to(device)
fu = fu.to(device)
change_labels = change_labels.to(device)
disease_labels = [disease_labels[0].to(device), disease_labels[1].to(device)]
base_embed, fu_embed, outputs, matching = model(base, fu)
_, preds = outputs.max(1)
total += change_labels.size(0)
correct += preds.eq(change_labels).sum().item()
# change loss
ce_criterion = nn.CrossEntropyLoss()
change_loss = ce_criterion(outputs, change_labels)
# matching loss
matching_loss = ACM_loss(matching).mean()
# disease loss
disease_loss = ce_criterion(base_embed, disease_labels[0]) + ce_criterion(fu_embed, disease_labels[1])
if args.disease_off is not None:
overall_loss = change_loss + (args.matching_weight*matching_loss)
elif args.only_change is not None:
overall_loss = change_loss
else:
overall_loss = (change_loss + args.disease_weight*disease_loss + args.matching_weight*matching_loss)
running_change += change_loss.item()
running_matching += matching_loss.item()
running_disease += disease_loss.item()
running_loss += overall_loss.item()
optimizer.zero_grad()
overall_loss.backward()
optimizer.step()
if (iter_ % args.print_freq == 0) & (iter_ != 0):
for param_group in optimizer.param_groups:
lr = param_group['lr']
print('Epoch: {:2d}, LR: {:5f}, Iter: {:5d}, Cls loss: {:5f}, Matching loss: {:5f}, Disease loss: {:5f}, Overall loss: {:5f}, Acc: {:4f}'\
.format(epoch, lr, iter_, running_change/iter_, running_matching/iter_, running_disease/iter_, running_loss/iter_, 100.*correct/total))
writer.add_scalar('change_loss', running_change/iter_, overall_iter)
writer.add_scalar('matching_loss', running_matching/iter_, overall_iter)
writer.add_scalar('disease_loss', running_disease/iter_, overall_iter)
writer.add_scalar('train_acc', 100.*correct/total, overall_iter)
iter_ += 1
overall_iter += 1
test(args, test_loader_in, model, grad_cam, device, writer, log_dir, checkpoint_dir, overall_iter)
torch.save({
'epoch' : epoch + 1,
'iter' : overall_iter,
'state_dict' : model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, os.path.join(checkpoint_dir, str(overall_iter)) + '.pth')
def test(args, data_loader, model, device, writer, log_dir, checkpoint_dir, iter_):
print('[*] Test Phase')
model.eval()
model.requires_grad_(False)
correct = 0
total = 0
with torch.no_grad():
for base, fu, change_labels, disease_labels, patient_name in iter(data_loader):
base = base.to(device)
fu = fu.to(device)
change_labels = change_labels.to(device)
_, _, outputs, _ = model(base, fu)
_, preds = outputs.max(1)
preds_cpu = preds.cpu().numpy().tolist()
### Change / No-change
total += change_labels.size(0)
correct += preds.eq(change_labels).sum().item()
labels_cpu = change_labels.cpu().numpy().tolist()
print('[*] Test Acc: {:5f}'.format(100.*correct/total))
writer.add_scalar('Test acc', 100.*correct/total, iter_)
model.train()
model.requires_grad_(True)
def main(args):
if args.random_seed is not None:
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.backends.cudnn.deterministic = True
# 0. device check & pararrel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_idx
print('[*] device: ', device)
# path setting
pathlib.Path(args.log_dir).mkdir(parents=True, exist_ok=True)
pathlib.Path(args.checkpoint_dir).mkdir(parents=True, exist_ok=True)
today = str(datetime.today()).split(' ')[0] + '_' + str(time.strftime('%H%M%S'))
folder_name = '{}_{}_{}'.format(today, args.message, args.dataset)
log_dir = os.path.join(args.log_dir, folder_name)
checkpoint_dir = os.path.join(args.checkpoint_dir, folder_name)
pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
pathlib.Path(checkpoint_dir).mkdir(parents=True, exist_ok=True)
# for log
f = open(os.path.join(log_dir,'arguments.txt'), 'w')
f.write(str(args))
f.close()
# make datasets & dataloader (train & test)
print('[*] prepare datasets & dataloader...')
if args.fov == 'True':
train_datasets = ClassPairDataset(args.train_path, dataset=args.dataset,
fov=args.fov, margin=args.margin, aug=args.aug, mode='train')
test_datasets_in = ClassPairDataset(args.test_path, dataset=args.dataset,
fov=args.fov, margin=args.margin, mode='test')
else:
train_datasets = ClassPairDataset(args.train_path, dataset=args.dataset,
fov=None, aug=args.aug, mode='train')
test_datasets = ClassPairDataset(args.test_path, dataset=args.dataset,
fov=None, mode='test')
print('[*] train data property')
train_datasets.get_data_property()
print('[*] test data property')
test_datasets_in.get_data_property()
train_loader = torch.utils.data.DataLoader(train_datasets, batch_size=args.batch_size,
num_workers=args.w, pin_memory=False, shuffle=True)
test_loader_in = torch.utils.data.DataLoader(test_datasets_in, batch_size=2,
num_workers=4, pin_memory=False, shuffle=False)
# select network
print('[*] build network...')
model = siamese_CMT_ACM(in_channels = 1,
stem_channels = 16,
cmt_channelses = [46, 92, 184, 368],
pa_channelses = [46, 92, 184, 368],
R = 3.6,
repeats = [2, 2, 10, 2],
input_size = 512,
sizes = [128, 64, 32, 16],
patch_ker=2,
patch_str=2,
num_classes = 2)
print("[*] Loading model")
print(('[i] Total model params: %.2fM'%(calculate_parameters(model))))
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
if torch.cuda.device_count() > 1:
optimizer = torch.optim.AdamW(model.module.parameters(), lr = args.lr,
weight_decay = args.weight_decay)
else:
optimizer = torch.optim.AdamW(model.parameters(), lr = args.lr,
weight_decay = args.weight_decay)
if args.resume is True:
checkpoint = torch.load(args.pretrained)
args.start_epoch = checkpoint['epoch']
args.start_iter = checkpoint['iter']
pretrained_dict = checkpoint['state_dict']
pretrained_dict = {key.replace("module.", ""): value for key, value in pretrained_dict.items()}
model.load_state_dict(pretrained_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
print("[*] checkpoint load completed")
# training
print('[*] start training...')
summary_writer = SummaryWriter(log_dir)
train(args, train_loader, test_loader_in, model, optimizer, device, summary_writer, log_dir, checkpoint_dir)
if __name__ == '__main__':
argv = parse_arguments(sys.argv[1:])
print("="*30)
print(argv)
print("="*30)
print()
main(argv)