forked from chokyungjin/MuSiC-ViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
165 lines (127 loc) · 5.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import sys
import os
import random
import numpy as np
from config import parse_arguments
from datasets import ClassPairDataset
from models.siamese_CMT_ACM import siamese_CMT_ACM
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from tqdm import tqdm
import time
import pathlib
from datetime import datetime
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import roc_auc_score
import json
import itertools
from utils import *
def test(args, data_loader, model, grad_cam, device, log_dir):
print('[*] Test Phase')
model.eval()
model.requires_grad_(False)
correct = 0
total = 0
overall_output = []
overall_pred = []
overall_gt = []
overall_pat = []
iter_ = 0
idx = 0
for base, fu, labels, patient_name in tqdm(iter(data_loader)):
base = base.to(device)
fu = fu.to(device)
labels = labels.to(device)
with torch.no_grad():
_, _, outputs, _ = model(base, fu)
outputs = F.softmax(outputs, dim=1)
_, preds = outputs.max(1)
new_labels = []
for i in range(labels.shape[0]):
new_labels.append(outputs[i, 1].cpu().detach().item())
preds_cpu = preds.cpu().detach().numpy().tolist()
labels_cpu = labels.cpu().detach().numpy().tolist()
overall_output += new_labels
overall_pred += preds_cpu
overall_gt += labels_cpu
overall_pat += patient_name
total += labels.size(0)
correct += preds.eq(labels).sum().item()
iter_ += 1
idx += base.shape[0]
print('[*] Test Acc: {:5f}'.format(100.*correct/total))
tn, fp, fn, tp = confusion_matrix(overall_gt, overall_pred).ravel()
save_confusion_matrix(confusion_matrix(overall_gt, overall_pred), ['Change','No-Change'], log_dir)
save_results_metric(tn, tp, fn, fp, correct, total, log_dir)
save_roc_auc_curve(overall_gt, overall_output, log_dir)
save_csv(overall_pat, overall_gt, overall_pred, overall_output, log_dir)
def main(args):
if args.random_seed is not None:
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.backends.cudnn.deterministic = True
# 0. device check & pararrel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_idx
# path setting
pathlib.Path(args.log_dir).mkdir(parents=True, exist_ok=True)
today = str(datetime.today()).split(' ')[0] + '_' + str(time.strftime('%H%M%S'))
folder_name = '{}_{}_{}'.format(today, args.message, args.dataset)
log_dir = os.path.join(args.log_dir, folder_name)
pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
# for log
f = open(os.path.join(log_dir,'arguments.txt'), 'w')
f.write(str(args))
f.close()
# make datasets & dataloader (train & test)
print('[*] prepare datasets & dataloader...')
if args.fov == 'True':
test_datasets = ClassPairDataset(args.test_path, dataset=args.dataset, fov=args.fov,
sample_data=args.sample_data,
margin=args.margin, mode='test')
else:
test_datasets = ClassPairDataset(args.test_path, dataset=args.dataset,
fov=None, sample_data=None, aug=None, margin=args.margin, mode='test')
test_loader = torch.utils.data.DataLoader(test_datasets, batch_size=2,
num_workers=4, pin_memory=False, shuffle=False)
# select network
print('[*] build network...')
model = siamese_CMT_ACM(in_channels = 1,
stem_channels = 16,
cmt_channelses = [46, 92, 184, 368],
pa_channelses = [46, 92, 184, 368],
R = 3.6,
repeats = [2, 2, 10, 2],
input_size = 512,
sizes = [128, 64, 32, 16],
patch_ker=2,
patch_str=2,
num_classes = 2)
print("[*] model")
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
if torch.cuda.device_count() > 1:
optimizer = torch.optim.AdamW(model.module.parameters(), lr = args.lr,
weight_decay = args.weight_decay)
else:
optimizer = torch.optim.AdamW(model.parameters(), lr = args.lr,
weight_decay = args.weight_decay)
if args.pretrained is not None:
checkpoint = torch.load(args.pretrained)
args.start_epoch = checkpoint['epoch']
args.start_iter = checkpoint['iter']
pretrained_dict = checkpoint['state_dict']
pretrained_dict = {key.replace("module.", ""): value for key, value in pretrained_dict.items()}
model.load_state_dict(pretrained_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
print("[*] checkpoint load completed")
test(args, test_loader, model, device, log_dir)
if __name__ == '__main__':
argv = parse_arguments(sys.argv[1:])
main(argv)