Skip to content

mi2rl/L-R-marker-inpainting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Enhancing Deep Learning Based Classifiers with Inpainting Anatomical Side Markers (L/R Markers) for Multi-center Trials

https://user-images.githubusercontent.com/46750574/149261819-4a7878aa-643f-4309-b301-96add4405b3a.png

Requirements:

  • Install python3.
  • Install tensorflow (tested on Release 1.3.0, 1.4.0, 1.5.0, 1.6.0, 1.7.0).
  • Install tensorflow toolkit neuralgym (run pip install git+https://github.com/JiahuiYu/neuralgym).
  • Install MI2RLNet v1 L/R mark detection model (https://github.com/mi2rl/MI2RLNet)

Directory Architecture

|---------- inpaint_ops.py (inpainting operator)

|---------- checkpoint (input our pretrained model)

|---------- inpaint_model.py (inpainting model)

|---------- inpaint.yml (hyper parameter)


Preprocessing

  • minmax scaling (npy format)
  • image size : 1024 x 1024 x 1

Weight link

https://drive.google.com/drive/folders/17IiClqWW2YHUzPtKmgL4dR6RIKLoYNxK?usp=sharing


Inference

CUDA_VISIBLE_DEVICES='gpu_id' python [test.py](<http://test.py/>) \\
--image 'image path' \\
--mask 'detection mask path' \\
--output 'output path' \\
--checkpoint_dir './checkpoint/pretrained model path'

Result

https://user-images.githubusercontent.com/46750574/149261595-5e997a81-79ae-4fe3-9329-c5a715e6d88e.png


References

[1] Generative Image Inpainting with Contextual Attention; https://arxiv.org/abs/2111.06377. https://github.com/JiahuiYu/generative_inpainting

[2] An Open Medical Platform to Share Source Code and Various Pre-Trained Weights for Models to Use in Deep Learning Research https://kjronline.org/DOIx.php?id=10.3348/kjr.2021.0170, https://github.com/mi2rl/MI2RLNet


Contributing**

If you'd like to have any suggestions for these guidelines, you can contact us at namkugkim@gmail.com or open an issue on this GitHub repository.

All contributions welcome!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages