forked from neelabhpant/Deep-Learning-in-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultilayer_Neural_Networks.py
34 lines (26 loc) · 1.13 KB
/
Multilayer_Neural_Networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
def relu(input):
output = max(0, input)
return output
def predict_with_network(input_data):
node_0_0_input = (weights['node_0_0'] * input_data).sum()
node_0_0_output = relu(node_0_0_input)
node_0_1_input = (weights['node_0_1'] * input_data).sum()
node_0_1_output = relu(node_0_1_input)
hidden_0_outputs = np.array([node_0_0_output, node_0_1_output])
node_1_0_input = (weights['node_1_0'] * hidden_0_outputs).sum()
node_1_0_output = relu(node_1_0_input)
node_1_1_input = (weights['node_1_1'] * hidden_0_outputs).sum()
node_1_1_output = relu(node_1_1_input)
hidden_1_outputs = np.array([node_1_0_output, node_1_1_output])
model_output = (weights['output'] * hidden_1_outputs).sum()
return model_output
if __name__ == '__main__':
input_data = np.array([3, 5])
weights = {'node_0_0': np.array([2, 4]),
'node_0_1': np.array([ 4, -5]),
'node_1_0': np.array([-1, 1]),
'node_1_1': np.array([2, 2]),
'output': np.array([2, 7])}
output = predict_with_network(input_data)
print(output)