-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgui_arayüz
129 lines (103 loc) · 3.96 KB
/
gui_arayüz
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#oluşturulan tkinter arayüzünün kodları:
import tkinter as tk
from tkinter import ttk
from PIL import ImageTk, Image
from tkinter import filedialog
import numpy as np
import tensorflow
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing import image
CLASS_LABELS = ['Kızgın',
'İğrenmiş',
'Korkmuş',
'Mutlu',
'Nötr',
'Üzgün',
"Şaşkın",
]
COLORS = ['#9b5de5',
'#f15bb5',
'#f8a07b',
'#fee440',
'#7fd09d',
'#00bbf9',
'#00f5d4',
]
def decode_predictions(predictions):
return sorted(list(zip(CLASS_LABELS, predictions[0])), key=lambda x: x[1], reverse=True)
def load_img():
global img, image_data
for img_display in frame.winfo_children():
img_display.destroy()
image_data = filedialog.askopenfilename(initialdir="/", title="Choose an image",
filetypes=(("all files", "*.*"), ("png files", "*.png")))
basewidth = 150
img = Image.open(image_data)
wpercent = (basewidth / float(img.size[0]))
hsize = int((float(img.size[1]) * float(wpercent)))
img = img.resize((basewidth, hsize), Image.ANTIALIAS)
img = ImageTk.PhotoImage(img)
file_name = image_data.split('/')
panel = tk.Label(frame,
text=str(
file_name[-1]),
width=150)
# panel.pack()
panel.grid(row=0, column=0, columnspan=2)
panel_image = tk.Label(frame, image=img)
# panel_image.pack()
panel_image.grid(row=1, column=0, columnspan=2)
classify()
def classify():
# Preprocessing
original = Image.open(image_data).convert('L')
original = original.resize((48, 48), Image.ANTIALIAS)
img_rgb = original.convert('RGB')
img_arr = image.img_to_array(img_rgb)
img_batch = np.expand_dims(img_arr, axis=0)
img_preprocessed = img_batch.astype(np.float32) / 255.0
# Predicting
predictions = model.predict(img_preprocessed)
label = decode_predictions(predictions)
table = tk.Label(
frame, text="Tahminler", font="bold", bg='#181818', fg='#f9f6ee')
# table.pack()
table.grid(row=2, column=0, columnspan=2)
for i in range(0, len(label)):
result_label = tk.Label(frame,
text=str(label[i][0]),
bg="#181818",
fg=COLORS[i], # "#f9f6ee",
font="bold",
)
result_prediction = tk.Label(frame,
text=str(
round(float(label[i][1])*100, 2)) + '%',
bg="#181818",
fg=COLORS[i], # "#f9f6ee",
font="bold",
)
result_label.grid(row=i+3, column=0, sticky='ew')
result_prediction.grid(row=i+3, column=1, sticky='ew')
frame.grid_columnconfigure((0, 1), weight=1)
# result.pack()
root = tk.Tk()
root.title('IMAGE CLASSIFIER')
root.configure(background='#181818')
root.resizable(False, False)
canvas = tk.Canvas(root, height=600, width=600,
bg='#181818', highlightthickness=0)
canvas.grid(row=0, column=0)
# canvas.pack()
frame = tk.Frame(root,
bg='#181818',
highlightbackground='#f9f6ee',
highlightthickness=3) # 2e74b7
frame.place(relwidth=0.8, relheight=0.8, relx=0.1, rely=0.1)
chose_image = tk.Button(root, text='Choose Image',
padx=35, pady=10, font='bold', borderwidth=0,
fg="#f9f6ee", bg="#181818", command=load_img,
)
chose_image.grid(row=1, column=0)
model = tensorflow.keras.models.load_model('checkpoint3.h5')
root.mainloop()