-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
77 lines (77 loc) · 3.91 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
\documentclass{book/custombook}
\unitcode{CA203}
\unitname{Discrete Structures}
\unitcoordinator{Matthew McKague}
\author{Dinal Atapattu}
\begin{document}
\maketitle
\chapter{Sets}
\section{Set Theory}
\begin{itemize}
\item A set S is a collection of items (elements)
\item Unordered and unique
\item One basic property, \textit{membership}:
\begin{itemize}
\item $x \in S$ x is in S
\item $x \notin S$ x is not in S
\end{itemize}
\item For $x \in S$ we also say x is an element/member of S
\end{itemize}
\subsection{Defining Sets}
Sets can be defined by the following methods
\begin{itemize}
\item Listing elements
\begin{align*}
\text{SMALLPRIMES} = {1,3,5,7}
\end{align*}
\item Setbuilder Notation
\begin{align*}
\text{SQUARES} = \left\{ x \in \mathrm{Z} : x = y^2 : \text{ for some } y \in \mathrm{Z} \right\}
\end{align*}
\item Implied patterns
\begin{align*}
\text{EVENS} = {2,4,6,8}
\end{align*}
\textcolor{red}{Implied conditions are bad as they are ambigious ($6 \in {2,4,...}$ or
$6 \notin {2,4,...}$ depending if condition is even numbers or powers of 2)}
\end{itemize}
\subsection{Membership}
$x \in S$ if
\begin{itemize}
\item x is in the list if S is given explicitly
\subitem $1 \in {1,2,3}$ because it exists in the list
\item x satisfies the conditions for S if given in setbuilder notation
\subitem $12 \in \left\{ x \in \mathrm{Z} : x|60\right\}$ because 12 is an intger that divides
60
\item x satisfies the implied condition for the pattern
\subitem $15 \in \left\{1,3,5,...\right\}$ because it follows the implied condition (odd numbers)
\end{itemize}
\subsection{Equality of Sets}
Two sets are equal if they contain the same elements
\begin{align*}
S = T \Rightarrow x \in S \cap T
\end{align*}
\subsection{Subsets}
\begin{figure}[H]
\centering
\begin{flalign*}
\intertext{A is a subset of B if and only if every x in A exists in B (all the elements in A
are in B)}
A \subseteq B \Leftrightarrow {\forall x : x \in A \Rightarrow x \in B}
\intertext{A proper subset of B is a subset of B that is not equal to B}
A \subset B \equiv A \subseteq B \wedge A \neq B
\end{flalign*}
\caption{Improper and Proper Subset definition}
\end{figure}
\begin{figure}[H]
\centering
\begin{flalign*}
\intertext{The collection of all subsets of set A is defined as the power set of set A}
2^{A} = \mathcal{P}\left(A\right) = \left\{ x | x \subseteq A \right\}
\intertext{For example:}
\mathcal{P}\left(\varnothing\right\) = \left\{ \varnothing \right\}\\
\mathcal{P}\left(\left\{ a \right\}\right) = \left\{ \varnothing, \left\{ a \right\} \right\}\right)
\end{flalign*}
\caption{Power Set Definition}
\end{figure}
\end{document}