-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
69 lines (59 loc) · 3.48 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="keywords" content="trapezoidal rule, trapezium rule, meixinchoy, online calculator, step size, negative, integration, trapezoid, trapezium, trapezoidal, calculator, university, calculus, discrete math, numerical methods, RMM2, Choy Mei Xin,area, formula">
<meta name="robots" content="index, follow">
<meta name="description"
content="Trapezoidal or Trapezium Rule Calculator. Use this online trapezoidal rule calculator to find the approximate value of integration. This calculator can be used for negative lower or upper limits too. ">
<title>Numerical Methods - Trapezoidal Rule Calculator | meixinchoy</title>
<meta name="google-site-verification" content="RKvmEOq-FD2wxmhubjHYkyUzjJ_K-lxEDHb7NFqkR_c" />
<link rel="stylesheet" type="text/css" href="style.css" media="screen" />
<script src="script.js"></script>
</head>
<body>
<h1>Trapezoidal Rule Calculator</h1>
<p id="details">Use this online trapezoidal rule calculator to find the approximate value
of integration. Just enter the equation, lower limit, upper limit and the number of step size to get the results.
This calculator is also designed to handle lower and upper limits with negative values.</p>
<img src="https://www.a-levelmathstutor.com/images/integration/trapezium-theory.jpg"
alt="Online Trapezoidal Rule Calculator">
<div class="container">
<div class="inputContainer">
<h4 class="display">n= <input type="number" size="22" id="n"> ( n>0 )</h4>
<h4 class="display"> a= <input type="number" size="22" id="a"></h4>
<h4 class="display">b= <input type="number" size="22" id="b"></h4>
<h4 class="display"> f(x)=
<input type="text" size="22" id="d" placeholder="Math.sqrt(1+Math.pow(x,2))">
</h4>
<input type="button" value="submit" onclick='submit()'>
</div>
<div id="outputContainer">
<ul>
<li>step size = <span id="h"></span></li>
<li>x<sub>0</sub> = <span id="x0"></span></li>
<li>x<sub>1</sub> = <span id="x1"></span> </li>
<li id="ansText2"> x<sub>2</sub> = <span id="x2"></span></li>
<li id="ansText...">...</li>
<li id="ansTextn">x<sub>n</sub> = <span id="xn"></span> </li>
<li> Area ≈ <span id="area"> </span></li>
</ul>
<ul>
<br>
<li>f ( x<sub>0</sub> ) = <span id="f0"></span></li>
<li>f ( x<sub>1</sub> ) = <span id="f1"></span></li>
<li id="fansText2">f ( x<sub>2</sub> ) = <span id="f2"></span></li>
<li id="fansText..."><br></li>
<li id="fansTextn">f ( x<sub>n</sub> ) = <span id="fn"></span></li>
</ul>
</div>
</div>
<p>** f(x)should be written in code <br> (Math.pow(x,2), Math.PI, 2*x etc)<br>** The website can't
support numbers that are too big<br>** f(x<sub>3</sub>), f(x<sub>4</sub>) etc are logged in the console <br>
(right click -> inspect -> console) <br><br>
Made by Choy Mei Xin (RMM2)<br>
Find me at <a href="https://www.linkedin.com/in/choymeixin/" target="_blank">LinkedIn</a>
</p>
</body>
</html>