diff --git a/README.md b/README.md index 558b0b8f..cc58811c 100644 --- a/README.md +++ b/README.md @@ -19,10 +19,10 @@ New Feature ## Performance on WIDERFACE | Model | Size | Easy | Medium | Hard | SpeedT4
trt fp16 b1
(fps) | SpeedT4
trt fp16 b32
(fps) | Params
(M) | FLOPs
(G) | | :----------------------------------------------------------- | ---- | :--- | ------ | ---- | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- | -| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_face.pt) | 640 | 95.0 | 92.4 | 80.4 | 797 | 1313 | 4.63 | 11.35 | -| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_face.pt) | 640 | 96.2 | 94.7 | 85.1 | 339 | 484 | 12.41 | 32.45 | -| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_face.pt) | 640 | 97.0 | 95.3 | 86.3 | 188 | 240 | 24.85 | 70.59 | -| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l_face.pt) | 640 | 97.2 | 95.9 | 87.5 | 102 | 121 | 56.77 | 159.24 | +| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6n_face.pt) | 640 | 95.0 | 92.4 | 80.4 | 797 | 1313 | 4.63 | 11.35 | +| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6s_face.pt) | 640 | 96.2 | 94.7 | 85.1 | 339 | 484 | 12.41 | 32.45 | +| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6m_face.pt) | 640 | 97.0 | 95.3 | 86.3 | 188 | 240 | 24.85 | 70.59 | +| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6l_face.pt) | 640 | 97.2 | 95.9 | 87.5 | 102 | 121 | 56.77 | 159.24 | #### Table Notes @@ -63,7 +63,7 @@ python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 64 ``` - fuse_ab: Anchor Aided Training Mode - conf: select config file to specify network/optimizer/hyperparameters. We recommend to apply yolov6n/s/m/l_finetune.py when training on WIDER FACE or your custom dataset. -- data: prepare dataset and specify dataset paths in data.yaml ( [WIDERFACE](http://shuoyang1213.me/WIDERFACE/), [YOLO format widerface labels](https://github.com/meituan/YOLOv6/releases/download/0.3.0/widerface_yololabels.zip) ) +- data: prepare dataset and specify dataset paths in data.yaml ( [WIDERFACE](http://shuoyang1213.me/WIDERFACE/), [YOLO format widerface labels](https://github.com/meituan/YOLOv6/releases/download/0.3.1/widerface_yololabels.zip) ) - make sure your dataset structure as follows: ``` ├── widerface @@ -81,7 +81,7 @@ python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 64
Inference -First, download a pretrained model from the YOLOv6 [release](https://github.com/meituan/YOLOv6/releases/tag/0.3.0) or use your trained model to do inference. +First, download a pretrained model from the YOLOv6 [release](https://github.com/meituan/YOLOv6/releases/tag/0.3.1) or use your trained model to do inference. Second, run inference with `tools/infer.py` diff --git a/README_cn.md b/README_cn.md index a435f5b2..17253f41 100644 --- a/README_cn.md +++ b/README_cn.md @@ -18,10 +18,10 @@ ## WIDERFACE 模型指标 | Model | Size | Easy | Medium | Hard | SpeedT4
trt fp16 b1
(fps) | SpeedT4
trt fp16 b32
(fps) | Params
(M) | FLOPs
(G) | | :----------------------------------------------------------- | ---- | :--- | ------ | ---- | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- | -| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n_face.pt) | 640 | 95.0 | 92.4 | 80.4 | 797 | 1313 | 4.63 | 11.35 | -| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s_face.pt) | 640 | 96.2 | 94.7 | 85.1 | 339 | 484 | 12.41 | 32.45 | -| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m_face.pt) | 640 | 97.0 | 95.3 | 86.3 | 188 | 240 | 24.85 | 70.59 | -| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l_face.pt) | 640 | 97.2 | 95.9 | 87.5 | 102 | 121 | 56.77 | 159.24 | +| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6n_face.pt) | 640 | 95.0 | 92.4 | 80.4 | 797 | 1313 | 4.63 | 11.35 | +| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6s_face.pt) | 640 | 96.2 | 94.7 | 85.1 | 339 | 484 | 12.41 | 32.45 | +| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6m_face.pt) | 640 | 97.0 | 95.3 | 86.3 | 188 | 240 | 24.85 | 70.59 | +| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.1/yolov6l_face.pt) | 640 | 97.2 | 95.9 | 87.5 | 102 | 121 | 56.77 | 159.24 | #### 表格备注 @@ -62,7 +62,7 @@ python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 64 ``` - fuse_ab: 使用联合锚点训练模式 - conf: 配置文件路径,里面包含网络结构、优化器配置、超参数信息。如果您是在自己的数据集训练,我们推荐您使用yolov6n/s/m/l_finetune.py配置文件 -- data: 数据集配置文件,以 WIDERFACE 数据集为例,您可以在 [WIDERFACE](http://shuoyang1213.me/WIDERFACE/) 下载数据, 在这里下载[YOLO 格式标签](https://github.com/meituan/YOLOv6/releases/download/0.3.0/widerface_yololabels.zip) +- data: 数据集配置文件,以 WIDERFACE 数据集为例,您可以在 [WIDERFACE](http://shuoyang1213.me/WIDERFACE/) 下载数据, 在这里下载[YOLO 格式标签](https://github.com/meituan/YOLOv6/releases/download/0.3.1/widerface_yololabels.zip) - 确保您的数据集按照下面这种格式来组织; ``` ├── widerface @@ -80,7 +80,7 @@ python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 64
推理 -首先,从[release 页面](https://github.com/meituan/YOLOv6/releases/tag/0.3.0) 下载一个训练好的模型权重文件,或选择您自己训练的模型; +首先,从[release 页面](https://github.com/meituan/YOLOv6/releases/tag/0.3.1) 下载一个训练好的模型权重文件,或选择您自己训练的模型; 然后,通过 `tools/infer.py` 文件进行推理。