-
Notifications
You must be signed in to change notification settings - Fork 42
/
survival_Neuroblastoma.Rmd
254 lines (217 loc) · 11 KB
/
survival_Neuroblastoma.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
title: "Neuroblastoma (TARGET database) survival analysis"
output:
html_document:
toc: true
# toc_float: true
theme: united
# theme: cerulean
# number_sections: true
date: "`r Sys.Date()`"
author: "Mikhail Dozmorov"
bibliography: data.TCGA/TCGA.bib
csl: styles.ref/genomebiology.csl
---
```{r setup, echo=FALSE, message=FALSE, warning=FALSE}
# Set up the environment
library(knitr)
opts_chunk$set(cache.path='cache/', fig.path='img/', cache=F, tidy=T, fig.keep='high', echo=F, dpi=100, warnings=F, message=F, comment=NA, warning=F, results='as.is', fig.width = 10, fig.height = 6) #out.width=700,
library(pander)
panderOptions('table.split.table', Inf)
set.seed(1)
library(dplyr)
options(stringsAsFactors = FALSE)
```
# Libraries
```{r libraries}
if (!require(TCGA2STAT)) {
install.packages("https://cran.r-project.org/src/contrib/Archive/TCGA2STAT/TCGA2STAT_1.2.tar.gz", repos = NULL, type="source")
}
if (!require(survplot)) {
install.packages("data/survplot_0.0.7.tar.gz", repos = NULL, type="source")
}
library(TCGA2STAT)
library(survplot)
library(ggplot2)
library(reshape2)
source("Supplemental_R_script_1.R")
```
# Helper functions
```{r functions}
# A function to load TCGA data, from remote repository, or a local R object
load_data <- function(disease = cancer, data.type = data.type, type = type, data_dir = data_dir, force_reload = FALSE) {
FILE = paste0(data_dir, "/mtx_", disease, "_", data.type, "_", type, ".rda") # R object with data
if (all(file.exists(FILE), !(force_reload))) {
# If the data has been previously saved, load it
load(file = FILE)
} else {
# If no saved data exists, get it from the remote source
mtx <- getTCGA(disease = disease, data.type = data.type, type = type, clinical = TRUE)
save(file = FILE, list = c("mtx")) # Save it
}
return(mtx)
}
# A function to get data overview
summarize_data <- function(mtx = mtx) {
print(paste0("Dimensions of expression matrix, genex X patients: ", paste(dim(mtx$dat), collapse = " ")))
print(paste0("Dimensions of clinical matrix, patients X parameters: ", paste(dim(mtx$clinical), collapse = " ")))
print(paste0("Dimensions of merged matrix, patients X parameters + genes: ", paste(dim(mtx$merged.dat), collapse = " ")))
print("Head of the merged matrix")
print(mtx$merged.dat[1:5, 1:10])
print("Head of the clinical matrix")
print(mtx$clinical[1:5, 1:7])
print("List of clinical values, and frequency of each variable: ")
clin_vars <- apply(mtx$clinical, 2, function(x) length(table(x[ !(is.na(x) & x != "" )]))) %>% as.data.frame()
# Filter clinical variables to have at least 2, but no more than 10 categories,
# And they are not dates
clin_vars <- clin_vars[ as.numeric(clin_vars$.) > 1 & as.numeric(clin_vars$.) < 10 & !grepl("years|days|date|vital", rownames(clin_vars), perl = TRUE) , , drop = FALSE]
print(kable(clin_vars))
return(rownames(clin_vars))
}
# A function to create expression matrix
make_expression_matrix <- function(mtx = mtx, disease = cancer, data.type = data.type, type = type, results_dir = results_dir) {
# transposed expression matrix (genes start at column 4)
mtx.expression <- mtx$merged.dat[, 4:ncol(mtx$merged.dat) ] %>% t
# Set column names as patient IDs
colnames(mtx.expression) <- mtx$merged.dat$bcr
# Set row names as probe IDs
rownames(mtx.expression) <- colnames(mtx$merged.dat)[ 4:ncol(mtx$merged.dat) ]
# Save gzipped matrix
fileName.gz <- gzfile(paste0(results_dir, "/mtx_", disease, "_", data.type, "_", type, "_1expression.txt.gz"), "w")
write.table(mtx.expression, fileName.gz, sep = ";", quote = FALSE)
close(fileName.gz)
}
```
# Settings
```{r settings}
# Path where the downloaded data is stored
# Prepare the data with `misc/cgdsr_preprocessing.R`
data_dir = "/Users/mdozmorov/Documents/Data/GenomeRunner/TCGAsurvival/data" # Mac
# data_dir = "/Users/mdozmorov/Documents/nobackup" # Mac
# data_dir = "F:/Data/GenomeRunner/TCGAsurvival/data" # Windows
# data_dir = "D:"
# results_dir = "/Users/mdozmorov/Dropbox" # Path where the results are stored
# Cancer types: http://www.liuzlab.org/TCGA2STAT/CancerDataChecklist.pdf
# Data types: http://www.liuzlab.org/TCGA2STAT/DataPlatforms.pdf
# Expression types: http://www.liuzlab.org/TCGA2STAT/DataPlatforms.pdf
# Clinical values: http://www.liuzlab.org/TCGA2STAT/ClinicalVariables.pdf
# General settings
cancer = "nbl_target"
data.type = "2018_pub"
type = "mrna" # Doesn't work as of 08-15-2018
# type = "mrna_median_Zscores"
# Maximum number of days to take for survival analysis
max_days <- 200 * 30 # In days, # months x # days. For all days, use, e.g., 200 * 30
```
# Select genes
```{r selectedGenes}
# Select genes of interest
selected_genes = c("MCTS1")
```
# Methods
## Survival analysis
<!--TCGAsurvival/misc/cgdsr_preprocessing-->
Microarray gene expression data for 249 neuroblastoma patients were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database using the `cgdsr` v.1.2.6 R package on 08-15-2018. The data was provided as Z-score-transformed. It was analyzed using Kaplan-Meyer curves and Cox proportional hazard model by separating patients into high/low LONRF2 expression subgroups. A modified approach from [@Mihaly:2013aa] was used to estimate the best gene expression cutoff that separates high/low expression subgroups with differential survival.
<!-- TCGA_DEGs.Rmd -->
We took the advantage of the availability of clinical annotations. To identify if expression of a gene of interest affects survival in any specific clinical subgroup, subsets of patients annotated with specific clinical annotations were selected (e.g., “males” or “females” in the “gender” clinical annotation). Subgroups with < 40 patients were not considered.
# Load data
```{r loadData}
mtx <- load_data(disease = cancer, data.type = data.type, type = "", data_dir = data_dir, force_reload = FALSE)
clinical_annotations <- summarize_data(mtx = mtx)
```
```{r processData}
# Prepare expression data
expr <- mtx$merged.dat[ , 4:ncol(mtx$merged.dat)] %>% as.matrix
# Filter out low expressed genes
# Should be more than 90% of non-zero values
# ff <- genefilter::pOverA(p = 0.9, A = 0, na.rm = TRUE)
# expr <- expr[, apply(expr, 2, ff)]
expr <- data.frame(AffyID = mtx$merged.dat$bcr, expr, stringsAsFactors = FALSE)
# Prepare clinical data
clin <- mtx$merged.dat[, 1:3]
colnames(clin)[1] <- "AffyID"
# Filtering clinical data
clin <- clin[complete.cases(clin), ] # Remove NAs
clin <- clin[clin$OS < max_days, ] # Filtering by max days
# Filtering expression data
expr <- expr[expr$AffyID %in% clin$AffyID, ]
all.equal(expr$AffyID, clin$AffyID)
```
### Analysis 1: Selected genes, selected cancers, no clinical annotations
```{r analysis1}
system("mkdir res") # Create results folder
kmplot(expr, clin, event_index=2, time_index=3, affyid = selected_genes, auto_cutoff="true", transform_to_log2 = FALSE, cancer_type = cancer, fileType = "png", use_survminer = FALSE)
# Density plot of gene expression
png(paste0("res/", selected_genes, "_density.png"), width = 400, height = 400)
plot(density(expr[, colnames(expr) %in% selected_genes]), main = paste0("Expression of ", selected_genes, "gene"), xlab = "Z-score-transformed gene expression", ylab = "Frequency", lwd = 3)
abline(v = 0.7963, col = "red", lwd = 3)
dev.off()
# Rename the results folder
system("mv res res.genes.Analysis1")
```
### Analysis 3: Selected genes, all (or, selected) cancers, all unique categories
```{r analysis3}
system("mkdir res") # Create results folder
for (cancer_type in cancer) {
print(paste0("Processing cancer ", cancer_type))
mtx <- load_data(disease = cancer_type, data.type = data.type, type = type, data_dir = data_dir, force_reload = FALSE)
clinical_annotations <- summarize_data(mtx = mtx)
# Prepare expression data
expr <- mtx$merged.dat[ , 4:ncol(mtx$merged.dat)] %>% as.matrix
# Filter out low expressed genes
# Should be more than 90% of non-zero values
# ff <- genefilter::pOverA(p = 0.9, A = 0, na.rm = TRUE)
# expr <- expr[, apply(expr, 2, ff)]
expr <- data.frame(AffyID = mtx$merged.dat$bcr, expr, stringsAsFactors = FALSE)
# Prepare clinical data
clin <- mtx$merged.dat[, 1:3]
colnames(clin)[1] <- "AffyID"
# Full clinical information
# clin_full <- mtx$clinical
clin_full <- mtx$clinical[rownames(mtx$clinical) %in% clin$AffyID, ]
clin_full <- clin_full[match(expr$AffyID, rownames(clin_full)), ]
all.equal(rownames(clin_full), expr$AffyID)
clinical_annotations <- c("DIAGNOSIS", "ETHNICITY", "GRADE", "INSS_STAGE", "MKI", "MYCN", "PLOIDY", "RACE", "RISK_GROUP", "SEX", "TUMOR_SAMPLE_HISTOLOGY", "TUMOR_TISSUE_SITE")
# For each clinical annotation
for (annotation in clinical_annotations) {
# Get the number of patients per category in the current annotation
annotations <- table(clin_full[, annotation], useNA = "no")
# How many categories in the current annotation
num_of_annot_categories <- length(annotations)
# How many categories to select at one time
for (num_of_selected_categories in 1:num_of_annot_categories) {
# Select patients annotated with this categories
patients <- rownames(clin_full)[ clin_full[, annotation] %in% names(annotations)[ num_of_selected_categories] ]
# Get their index in the clin and expr matrixes
index_patients <- which(clin$AffyID %in% patients)
# If the number of patients annotated with the combination of categories is large enough, proceed
if (length(index_patients) > 40) {
print(paste("Processing annotation:", annotation,
", categories:", names(annotations)[ num_of_selected_categories],
", number of patients:", length(index_patients)))
# Get a subset of clinical information for these patients
clin_selected <- clin[ index_patients, ]
# Get a subset of expression information for these patients
expr_selected <- expr[ index_patients, ]
# For this subset of expression, filter out low expressed genes
# index_genes <- apply(expr_selected %>% dplyr::select(-AffyID), 2, ff) # index of expression values to keep
# expr_selected <- cbind(expr_selected$AffyID, dplyr::select(expr_selected, -AffyID)[, index_genes]) # patient IDs and expression values to keep
# Perform actual survival analysis
kmplot(expr_selected, clin_selected, event_index=2, time_index=3, affyid = selected_genes, auto_cutoff="true", transform_to_log2 = FALSE, cancer_type = paste(c(cancer_type, annotation, names(annotations)[ num_of_selected_categories] ), collapse = "-"), fileType = "png", use_survminer = FALSE)
}
}
}
}
# Rename the results folder
system("mv res res.genes.Analysis3")
```
### Analysis 2: Different survival times
```{r}
system("mkdir res") # Create results folder
clin$status <- clin_full$EFSCENS
clin$OS <- clin_full$EFS_TIME
kmplot(expr, clin, event_index=2, time_index=3, affyid = selected_genes, auto_cutoff="true", transform_to_log2 = FALSE, cancer_type = cancer, fileType = "png", use_survminer = FALSE)
# Rename the results folder
system("mv res res.genes.Analysis1_EFS")
```
# References