-
Notifications
You must be signed in to change notification settings - Fork 25
Workflow Examples
- Graph Construction
- Merge Graphs
- Error Cleaning
- Read Threading
- Link Cleaning
- Merge Links
- Call Variants
- Compare to a Reference
- Post processing a VCF
- Assemble Contigs
- Filter Subgraph
- Filter Reads
- Plot Graph
Construct graphs for three samples (using 70GB ram):
ctx31 build -m 70G -k 31 --sample NA12878 --seq input.fq.gz NA12878.ctx
ctx31 build -m 70G -k 31 --sample Mickey --seq2 reads.1.fq.gz reads.2.fq.gz Mickey.ctx
ctx31 build -m 70G -k 31 --sample Minnie --seq data.bam Minnie.ctx
Construct graph for the reference (hg19)
ctx31 build -m 70G -k 31 --sample hg19 --seq hg19.fa.gz hg19.ctx
Merge multiple graphs together. Graphs are kept as separate colours unless the --flatten
option is used. To combine three graphs into refAndSamples.ctx:
ctx31 join --out refAndSamples.ctx NA12878.ctx Mickey.ctx Minnie.ctx
A) 'Clean' graphs to remove sequencing error (per sample, for high coverage samples):
ctx31 clean NA12878.clean.ctx NA12878.ctx
ctx31 clean Mickey.clean.ctx Mickey.ctx
ctx31 clean Minnie.clean.ctx Minnie.ctx
...then merge graphs into file refAndSamples.ctx
. Uses 80GB ram:
ctx31 join -m 80G refAndSamples.clean.ctx hg19.ctx NA12878.clean.ctx Mickey.clean.ctx Minnie.clean.ctx
B) Alternatively merge uncleaned samples then clean on the population (multiple low depth samples). Uses 100GB ram:
ctx31 clean -m 100G --out samples.clean.ctx NA12878.ctx Mickey.ctx Minnie.ctx
ctx31 join -m 80G refAndSamples.ctx hg19.ctx samples.clean.ctx
Now we have cortex graphs of the reference and our samples with sequencing error removed.
The command ctx31 clean
has the option of writing out histograms of supernode lengths and coverages with the --covg-before
, --covg-after
, --len-before
and --len-after
arguments. You can plot the results of these using a pair of scripts bundled with cortex in the scripts/
directory (requires R
and R packages ggplot2
and gridExtra
):
R --vanilla --file=scripts/plot-covg-hist.R --args covg.before_cleaning.csv covg.before_cleaning.pdf
R --vanilla --file=scripts/plot-covg-hist.R --args covg.after_cleaning.csv covg.after_cleaning.pdf
R --vanilla --file=scripts/plot-length-hist.R --args length.before_cleaning.csv length.before_cleaning.pdf
R --vanilla --file=scripts/plot-length-hist.R --args length.after_cleaning.csv length.after_cleaning.pdf
Read threading aligns reads against the graph and generates graph `links' which store long range connectivity information. This is per-sample information (each sample has its own set of links).
Before threading reads through the graph, you must run inferedges
:
ctx31 inferedges -m 50G in.ctx
This edits in.ctx
to add missing edges between kmers. Later steps assume all edges between kmers already exist.
Thread reads through the graph to assist in assembly, generating file refAndSamples.ctp.gz
:
ctx31 thread -m 80G --seq2 NA12878.1.fq NA12878.2.fq --out NA12878.ctp.gz refAndSamples.ctx:1
ctx31 thread -m 80G --seqi Mickey.bam --out Mickey.ctp.gz refAndSamples.ctx:2
ctx31 thread -m 80G --seqi Minnie.sam --out Minnie.ctp.gz refAndSamples.ctx:3
Now the link files NA12878.ctp.gz
, Mickey.ctp.gz
and Minnie.ctp.gz
are ready to be used alongside their respective graphs, e.g.:
ctx31 contigs -m 100G -p 1:NA12878.ctp.gz -p 2:Mickey.ctp.gz -p 3:Minnie.ctp.gz refAndSamples.ctx
Note: the reference is colour 0 in the above example.
## Link CleaningOnce a set of links have been generated, we need to remove links due to sequencing error.
# In this example k=31
# First generate two CSV files using up to 1000 kmers: links.raw.effcovg.csv links.raw.list.csv
./scripts/cortex_links.pl list --limit 1000 <(gzip -fcd links.raw.ctp.gz) links.raw.effcovg.csv links.raw.list.csv
# Use links.raw.list.csv to pick a cleaning threshold (k=31)
R --slave --vanilla --quiet -f ./scripts/R/make_link_cutoffs.R --args 31 links.raw.list.csv > links.cleaning.txt
# Fetch threshold from the output
thresh=$(tail -1 links.cleaning.txt)
# Clean the links and write them to links.clean.ctp.gz
./scripts/cortex_links.pl clean <(gzip -fcd links.raw.ctp.gz) $thresh | gzip -c) > links.clean.ctp.gz
Cleaning links also removes redundant links. Combined with removing rare links, this reduces the memory required to store graph connectivity.
## Merge Link FilesSimilar to the join
command, pjoin
merges link files.
ctx31 pjoin -o refAndNA12878.ctp.gz ref.ctp.gz NA12878.ctp.gz
ctx31 bubbles -m 100G --out denovo.bubbles.gz --haploid 0 -p refAndSamples.ctp.gz refAndSamples.ctx
Uses the graph and links (refAndSamples.ctx
, refAndSamples.ctp.gz
) to call variants that are saved to the file denovo.bubbles.gz
. We also specify that the first colour is a haploid sample (with --haploid 0
). This is useful in removing bubbles caused by repeats rather than real variants.
Next we extract the 5' flanks from the bubble file:
./scripts/cortex_print_flanks.sh denovo.bubbles.gz > denovo.5pflank.fa
Creates the file denovo.5pflank.fa
. We then map the putative variant flanks to our reference (in this case hg19). We can do this with stampy:
stampy.py -G hg19 hg19.fa # create hg19.stidx
stampy.py -g hg19 -H hg19 # create hg19.sthash
stampy.py -g hg19 -h hg19 --inputformat=fasta -M denovo.5pflank.fa > denovo.5pflank.sam
or BWA:
bwa index hg19.fa
bwa mem hg19.fa denovo.5pflank.fa > denovo.5pflank.sam
Then we align the alleles to the reference and generate a VCF
ctx31 calls2vcf -F denovo.5pflank.sam -o denovo.vcf bubbles.txt.gz hg19.fa
This generates a VCF of sites. Genotyping variants is not yet implemented. See the VCF post processing section to sort, remove duplicates, index and clean up your VCF.
## Compare to a ReferenceIf you have an assembled genome, you can compare your sequenced samples to it to identify large variants and re-arrangements:
ctx31 breakpoints -m 100G --seq hg19.fa --out breakpoints.txt.gz -p PlutoAndGoofy.ctp.gz PlutoAndGoofy.ctx
The breakpoints command identifies where your samples diverge from the reference and rejoin it elsewhere. This could be small regions of clustered SNPs, inversions or translocations.
We can generate a VCF of small events using calls2vcf
:
ctx31 calls2vcf -o breakpoints.vcf breakpoints.txt.gz hg19.fa
See the VCF post processing section to sort, remove duplicates, index and clean up your VCF.
Results can be plotted on a Circos plot using a perl script in scripts/
:
gzip -dc breakpoints.txt.gz | scripts/make-circos.pl out-dir -
cd out-dir
circos
Plot appears in out-dir/circos.png
.
Once you have called variants with the Bubble Caller or the Breakpoint Caller, you are left with an unsorted VCF calls.raw.vcf
. Our proposed post-processing sorts, removes duplicates, renames variants, compresses and indexes the VCF:
./scripts/bash/vcf-sort calls.raw.vcf > calls.sorted.vcf
bcftools norm --remove-duplicates --fasta-ref ref.fa --multiallelics +both $< | \
./scripts/bash/vcf-rename > calls.norm.vcf
bgzip calls.norm.vcf
bcftools index calls.norm.vcf.gz
Pull out contigs from an individual in a population. Fills in low coverage gaps in sequence from the population if unconfounded.
ctx31 contigs -p refAndSamples.ctp.gz --colour 1 --out refAndSamples.contigs.fa refAndSamples.ctx
The contigs
command uses random kmers to seed contigs, therefore it may print duplicate contigs and some contigs that are substrings of others. To remove duplicate contigs you can use the rmsubstr
command:
ctx31 rmsubstr -m 10G --out refAndSamples.contigs.rmdup.fa refAndSamples.contigs.fa
More on the contig assembly page.
## Filter A SubgraphPull out a region of interest using a set of reads or kmers. The subgraph command searches out from the seed kmers by dist
kmers (dist >= 0
).
ctx31 subgraph --seq contig.fa contig.ctx 100 graph.ctx
Input is graph.ctx
, output is saved to contig.ctx
. You can specify particular colours on the input to keep in the output. Add the --invert
option to invert the kmers selected - only take those further than dist
kmers.
Filter reads by whether or not they share a kmer with a graph:
ctx31 reads [--fasta|--fastq] --seq in1.fa out.se --seq2 in.1.fq in.2.fq out.pair in.ctx
Will save reads from in1.fa
to out.se.fa.gz
and from in.1.fq
,in.2.fq
to out.pair.1.fa.gz
,out.pair.2.fa.gz
. Output options are --fasta
or --fastq
. Paired end reads (--seq2
) are considered touching the graph if either read shares one or more kmers with the graph. Add the --invert
option to select reads that DO NOT touch the graph.
Requires GraphViz which provides the dot
command. Flattens any colours in the graph:
./scripts/cortex_to_graphviz.pl graph.ctx:0,3 | dot -Tpdf > kmers.pdf
Or to merge adjacent kmers add the --simplify
option:
./scripts/cortex_to_graphviz.pl --simplify graph.ctx:0,3 | dot -Tpdf > contigs.pdf
Or you can just use ./scripts/cortex_to_graphviz.pl
to generate dot files.
You can generate a plot of a de Bruijn graph straight from sequence files using scripts/seq2pdf.sh
:
./scripts/seq2pdf.sh --simplify 3 <(echo ACAACACGT) <(echo CCACACAA) > out.pdf
Usage is: ./scripts/seq2pdf.sh [--simplify] <kmer> <file1> [file2] > out.pdf
. Files can be of types FASTA, FASTQ, SAM, BAM, TXT or even gzipped. Requires graphviz.