This repository has been archived by the owner on Feb 20, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuniverse_poly.v
261 lines (95 loc) · 3.21 KB
/
universe_poly.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
Require Import Utf8.
Definition idmono {A : Type} (a : A) := a.
Fail Definition selfapp : forall A, A -> A :=
idmono (@idmono).
Polymorphic Definition id {A : Type} (a : A) := a.
Definition selfapp : forall A, A -> A := id (@id).
Set Printing All.
Set Printing Universes.
Print selfapp.
(** Polymorphic inductives *)
Polymorphic Inductive pprod (A B : Type) :=
| ppair (a : A) (b : B).
Arguments ppair {A B} a b.
Definition U2 := Type.
Definition U1 := Type : U2.
Definition U0 := Type : U1.
Inspect 3.
(* U2 -> Type 19 *)
(* U1 -> Type 20 *)
(* U0 -> Type 21 *)
(** Polymorphic definitions *)
Polymorphic Definition twice (u : Type) :=
pprod u u -> pprod u u.
Let twiceU0 := twice U0.
Let twiceU1 := twice U1.
Print twiceU0.
Print twiceU1.
Check (twiceU1 : U2).
Check (twiceU0 : U1).
Fail Check (twiceU0 : U0).
(* With cumulativity *)
Check (twiceU0 : U2).
(** Types in records *)
Module MonomorphicMagma.
Record magma :=
{ magma_carrier :> Type;
magma_op : magma_carrier → magma_carrier → magma_carrier }.
Definition magma_nat : magma :=
{| magma_carrier := nat;
magma_op x y := plus x y |}.
Definition magma_product (x : magma) (y : magma) :=
{| magma_carrier := (x * y);
magma_op t u :=
let '(t1, t2) := t in
let '(u1, u2) := u in
(magma_op x t1 u1, magma_op y t2 u2)
|}.
Fail Definition magma_magma : magma :=
{| magma_carrier := magma;
magma_op := magma_product |}.
End MonomorphicMagma.
(* With polymorphism *)
Module PolymorphicMagma.
Set Universe Polymorphism.
Record magma :=
{ magma_carrier :> Type;
magma_op : magma_carrier → magma_carrier → magma_carrier }.
Definition magma_nat : magma :=
{| magma_carrier := nat;
magma_op x y := plus x y |}.
Definition magma_product (x : magma) (y : magma) :=
{| magma_carrier := pprod x y;
magma_op t u :=
let 'ppair t1 t2 := t in
let 'ppair u1 u2 := u in
ppair (magma_op x t1 u1) (magma_op y t2 u2)
|}.
Monomorphic Definition magma_magma : magma :=
{| magma_carrier := magma;
magma_op := magma_product |}.
End PolymorphicMagma.
(** Magma is instantiated at 2 incompatible levels in
[magma_magma] *)
Print PolymorphicMagma.magma_magma.
Test Universe Polymorphism.
(** Internalized translations: *)
Polymorphic Inductive sigma (A : Type) (P : A -> Type) :=
dpair : ∀ a : A, P a -> sigma A P.
Notation " { x : A & P } " := (@sigma A (fun x : A => P)) : type_scope.
Notation " { x & P } " := (@sigma _ (fun x => P)) (at level 0, x at level 99) : type_scope.
Polymorphic Inductive paths {A : Type} : A -> A -> Type :=
idpath : forall a, @paths A a a.
Polymorphic Definition contr (A : Type) :=
forall x : A, { y : A & paths x y }.
Polymorphic Definition _Type :=
{ A & contr A }.
Print _Type.
(** Sigma is now polymorphic, only one exists... *)
Definition subset {A : Set} (P : A → Prop) : Set :=
sigma A P.
Polymorphic
Definition subsetT {A : Type} (P : A → Prop) :=
sigma A P.
Definition conj (A B : Prop) : Prop :=
sigma A (fun _ => B).