-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeventhStep_London60.m
136 lines (126 loc) · 5.2 KB
/
SeventhStep_London60.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% In this step I plot the PPPs for the data above 60 KMPH
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%==================================
% Basic Initialization instructions
%==================================
clear; % Clear Memory
clc; %Clear Command Window
%===================================
% Basic Data Extraction instructions
%===================================
%Define the folder location of CSV files
folder='C:\Users\Maulin Amin\OneDrive - University of Waterloo\Waterloo\Winter 2018\Environment Canada\Wind&SnowData\CSV\London';
i=1; %Set i=1 so that it does not give error for data{0} which is impossible
%use the Datastore function to read all the CSV files in the folder
ds = tabularTextDatastore(folder,'FileExtensions','.csv','SelectedVariableNames',{'Date_Time','Year','Month','Day','SpdOfMaxGust_km_h_'});
%a while loop divides the Datastore variable data into years
wind_data = readall(ds);
%===================================
% Getting the extracted data ready for analysis
%===================================
%Make a second set of data. Here we just replace <31 with 30.5 in the data
t = cell2table(wind_data.SpdOfMaxGust_km_h_); %extract just the data column for modifications
y = table2array(t); %prepare to make modifications
y = strrep(y,'<31','30.5'); %make modifications
wind_data.SpdOfMaxGust_km_h_ = y;
%remove the rows with missing entries
wind_data = rmmissing(wind_data);
%Covert to DatTime
temp_Date_Time = datetime(wind_data.Date_Time,'InputFormat','yyyy-MM-dd'); %Array that converts 'string date' to datetime format
wind_data.Date_Time = temp_Date_Time;
%Convert Wind data from String to Number
Wind_Gust = cell2table(wind_data.SpdOfMaxGust_km_h_);
Wind_Gust = table2array(Wind_Gust);
Wind_Gust = str2double(Wind_Gust);
wind_data.SpdOfMaxGust_km_h_ = (Wind_Gust);
%Convert Year data from String to Number
Wind_Year = cell2table(wind_data.Year);
Wind_Year = table2array(Wind_Year);
Wind_Year = str2double(Wind_Year);
wind_data.Year = (Wind_Year);
%Convert Month data from String to Number
Wind_Month = cell2table(wind_data.Month);
Wind_Month = table2array(Wind_Month);
Wind_Month = str2double(Wind_Month);
wind_data.Month = (Wind_Month);
%Convert Day data from String to Number
Wind_Day = cell2table(wind_data.Day);
Wind_Day = table2array(Wind_Day);
Wind_Day = str2double(Wind_Day);
wind_data.Day = (Wind_Day);
%===================================
% Modifying the data further for analysis
%===================================
%Delete all the data below 60kmph
A = wind_data;
A = table2timetable(A);
toDelete = A.SpdOfMaxGust_km_h_ < 60;
A(toDelete,:) = [];
%Calculate the time interval between the data
A = timetable2table(A);
for k = 2:numel(A.Date_Time)
A.Time_Interval(k) = daysact(A.Date_Time(k-1), A.Date_Time(k));
end
toDelete = A.Time_Interval < 7;
A(toDelete,:) = [];
%Calculate the Cum_N(t)
for k = 1:numel(A.Date_Time)
A.Cum_Nt(k) = k;
end
%Calculate the cumulative time interval
first = 0;
for k = 1:numel(A.Date_Time)
second = A.Time_Interval(k);
A.CumTI(k) = first+second;
first = A.CumTI(k);
end
%Calculate the log of Cum_N(t)
for k = 1:numel(A.Date_Time)
A.Ln_Cum_Nt(k) = log(A.Cum_Nt(k));
end
%Calculate the log of cumulative time interval
for k = 1:numel(A.Date_Time)
A.Ln_CumTI(k) = log(A.CumTI(k));
end
A = table2timetable(A);
%PLOT THE NHPP
p = polyfit(A.Ln_CumTI,A.Ln_Cum_Nt,1);
f = polyval(p,A.Ln_CumTI);
figure;
plot(A.Ln_CumTI,A.Ln_Cum_Nt,'.',A.Ln_CumTI,f,'-')
grid on;
legend('data','linear fit','Location','southeast')
dim = [0.2 0.5 0.3 0.3];
mdl = fitlm(A.Ln_CumTI,A.Ln_Cum_Nt);
ylabel('Ln(Cum N(t))'); xlabel('Ln(Time)');
X{1} = sprintf('London: NHPP for wind speed >60kmph: %f X + %f and R-squared = %f',p(1),p(2),mdl.Rsquared.Ordinary);
%title(X);
%set(gca,'Ylim',[30 160]) % Adjust Y limits of "current axes"
set(gca,'FontName','Times');
set(gcf,'Units','inches') % Set figure size units of "current figure"
set(gcf,'Color','white');
set(gcf,'Position',[0,0,7.5,2.5]) % Set figure width (6 in.) and height (4 in.)
print -deps2c 3136.eps % Save as PDF
movefile('3136.eps','C:\Users\Maulin Amin\OneDrive - University of Waterloo\Waterloo\Winter 2018\Environment Canada\Thesis\Latex\plots');
%===================================
%WRITE THE DATA ON EXCEL FILE
%===================================
X = cell2table(X);
File1 = 'C:\Users\Maulin Amin\OneDrive - University of Waterloo\Waterloo\Winter 2018\Environment Canada\Wind&Snow\Step7_Parameters.xlsx';
writetable(X,File1,'Sheet','London60');
% File = 'C:\Users\Maulin Amin\OneDrive - University of Waterloo\Waterloo\Winter 2018\Environment Canada\Wind&Snow\Step7_Toronto.xlsx';
% %===================================
% %CLEAR THE EXCEL FILE BEFORE RUNNING THE PROGRAM
% %===================================
% for SheetNum=1
% [N, T, Raw]=xlsread(File, SheetNum);
% [Raw{:, :}]=deal(NaN);
% xlswrite(File, Raw, SheetNum);
% end
% %===================================
% %WRITE THE DATA ON EXCEL FILE
% %===================================
% A = timetable2table(A);
% writetable(A,File,'Sheet','NHPP for "> 60KMPH"');