-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBlogMilwaukee.py
418 lines (315 loc) · 14.1 KB
/
BlogMilwaukee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# -*- coding: utf-8 -*-
"""
Create interactive maps for cases and hospitalizations using Plotly.
"""
import pandas as pd
import geopandas as gpd
import datetime
import numpy as np
import os
import covid
import re
#%%
if False:
# get milwaukee test numbers by copying html of the dashboard and scraping it
# get this originally by doing a browser html inspection of the graph on the Milwaukee county dashboard,
# then copying it to a text file. The tooltips of the graph are stored in "aria-label" labels, so
# I can regex on these labels below.
def parse_mke_dashboard(html_file, data_name):
file_obj = open(html_file)
file_text = file_obj.read()
m = re.findall('aria-label=\"\s(\S*?)\s(\S*?)\"', file_text)
datelist = list()
valuelist = list()
for kk, element in enumerate(m):
datestr = element[0]
date = datetime.datetime(year=2020, month=pd.to_numeric(datestr[0:2]), day=pd.to_numeric(datestr[3:]))
datelist.append(date)
valuestr = element[1]
valuestr = valuestr.replace(',', '')
valuelist.append(pd.to_numeric(valuestr))
data = pd.DataFrame(data={'Date': datelist, data_name: valuelist})
return data
tests = parse_mke_dashboard('C:\dev\covid-wisconsin\data\Dashboard-Milwaukee-Tests_2020-11-09.html', 'Tests')
cases = parse_mke_dashboard('C:\dev\covid-wisconsin\data\Dashboard-Milwaukee-Cases_2020-11-09.html', 'Cases')
mke = tests.merge(cases)
mke['Positive Rate'] = mke.Cases / mke.Tests
mke.plot(x='Date', y=['Tests', 'Cases'])
mke.plot(x='Date', y='Positive Rate')
#%% Get the coviddata
# Updated by UpdateData.py, just load from csv here
datapath = '.\\data'
csv_file_pop = datapath + '\\Population-Data-WI.csv'
# population data
popdata = covid.read_pop_data_wi(csv_file_pop)
# covid data
# covid.update_covid_data_wi('tract')
covid_tract = covid.read_covid_data_wi('tract')
county = covid.read_covid_data_wi('county')
# filter on Milwaukee tracts
covid_tract_mke = covid_tract.loc[covid_tract.GEO=='Census tract']
covid_tract_mke = covid_tract_mke.loc[covid_tract_mke.GEOID.apply(lambda x: x[0:5]=='55079')]
#%% County racial stats
mke = county.loc[county.NAME == 'Milwaukee']
mke.plot(x='Date', y=['POS_WHT', 'POS_BLK', 'POS_E_HSP'])
#%% County cases / hosp plot
# reduce and rename at state level
col_rename = {'Date': 'Date', 'POS_NEW': 'Cases', 'TEST_NEW': 'Tests', 'DTH_NEW': 'Deaths', 'HOSP_NEW': 'Hospitalizations'}
mke = mke.rename(columns=col_rename)
savefile = '.\\docs\\assets\\plotly\\Cases-Hosp-Milwaukee.html'
fig = covid.plotly_twolines(
mke,
'Hospitalizations',
'Cases',
plotcolors=['darkorange', 'steelblue', 'burlywood'],
secondary_scale=10,
plotlabels = {'title': 'Milwaukee Daily Cases and Hospitalizations',
'yaxis': 'Hospitalizations',
'yaxis_secondary': 'Cases',
},
column1_bar=True,
savefile=savefile,
)
fig.add_annotation(x=datetime.datetime(2020,5,11), y=45, xanchor='right', align='right',
text='950 hospitalizations<br>from prior days<br>reported on May 11<br>(not pictured)')
fig.add_annotation(x=datetime.datetime(2020,5,11), y=-2, xanchor='right', align='right', showarrow=False,
text='Wave 1')
fig.add_annotation(x=datetime.datetime(2020,6,30), y=-2, xanchor='right', align='right', showarrow=False,
text='Wave 2')
fig.add_annotation(x=datetime.datetime(2020,8,31), y=-2, xanchor='right', align='right', showarrow=False,
text='Wave 3')
fig.add_annotation(x=datetime.datetime(2020,10,15), y=-2, xanchor='right', align='right', showarrow=False,
text='Wave 4')
fig.add_annotation(x=datetime.datetime(2020,11,23), y=-2, xanchor='right', align='right', showarrow=False,
text='Wave 5')
# add dividers
fig.update_layout(shapes=[
dict(
type= 'line', line_color='gray', line_dash='dash',
yref= 'paper', y0= 0, y1= 1,
xref= 'x', x0=datetime.datetime(2020,5,11), x1=datetime.datetime(2020,5,11)
),
dict(
type= 'line', line_color='gray', line_dash='dash',
yref= 'paper', y0= 0, y1= 1,
xref= 'x', x0=datetime.datetime(2020,6,30), x1=datetime.datetime(2020,6,30)
),
dict(
type= 'line', line_color='gray', line_dash='dash',
yref= 'paper', y0= 0, y1= 1,
xref= 'x', x0=datetime.datetime(2020,8,31), x1=datetime.datetime(2020,8,31)
),
dict(
type= 'line', line_color='gray', line_dash='dash',
yref= 'paper', y0= 0, y1= 1,
xref= 'x', x0=datetime.datetime(2020,10,15), x1=datetime.datetime(2020,10,15)
),
])
fig.write_html(
file=savefile,
# default_height=fig_height,
include_plotlyjs='cdn',
)
os.startfile(savefile)
save_png = '.\\docs\\assets\\Cases-Hosp-Milwaukee.png'
fig.write_image(
save_png,
width=900,
height=600,
engine='kaleido',
)
os.startfile(save_png)
#%% Tract population
tractpopfile = '.\\data\\geo\\Tract-Population-WI\\Tract-Population-WI.csv'
tractcsv = pd.read_csv(tractpopfile)
tractpop = pd.DataFrame({'GEOID': [s[9:] for s in tractcsv.iloc[1:,0]],
'NAME' : tractcsv.iloc[1:,1],
'Population': pd.to_numeric(tractcsv.iloc[1:,2]),
'Margin of Error': pd.to_numeric(tractcsv.iloc[1:,3], errors='coerce'),
})
# remove Wisconsin state
tractpop = tractpop[tractpop.GEOID!='55']
# set GEOID as index
tractpop = tractpop.set_index('GEOID')
# plot distribution of tract populations
# tractpop.sort_values('Population').reset_index(drop=True).plot(y='Population')
#%% Geography work
# WI DNR shapefile - doesn't have lake winnebago either, so never mind
# shapefile = 'data\\geo\\WI_County_Boundaries_24K.shp'
# countiesWI = gpd.read_file(shapefile)
# countiesWI['NAME'] = countiesWI.COUNTY_NAM
# shapefile of US census tracts in WI
shapefile = 'data\\geo\\cb_2019_55_tract_500k.shp'
# read data set of all WI tracts
witracts = gpd.read_file(shapefile)
# filter on Milwaukee county
mketracts = witracts[witracts.COUNTYFP=='079']
# set GEOID as index
mketracts = mketracts.set_index('GEOID')
# now that both have same index, get population from tractpop
mketracts['Population'] = tractpop['Population']
#%% Select dates of interest
latest_date = covid_tract.Date.max()
delta = 28
delta_str = '(' + str(delta) + ' days)'
# start_date = datetime.datetime(year=2020, month=4, day=11) # earliest date of tract tracking
# end_date = start_date + datetime.timedelta(days=28)
deltas = list()
start_dates = list()
end_dates = list()
start_dates.append(datetime.datetime(year=2020, month=1, day=1))
end_dates.append(datetime.datetime(year=2020, month=5, day=11))
deltas.append('(as of 11-May)')
# for kk in range(1,8):
# start_dates.append(end_dates[-1])
# end_dates.append(end_dates[-1] + datetime.timedelta(days=28))
# deltas.append('('+str(start_dates[-1]) + ' to ' + str(end_dates[-1]) + ')')
start_dates.append(datetime.datetime(year=2020, month=5, day=11))
end_dates.append(datetime.datetime(year=2020, month=6, day=30))
deltas.append('(12-May through 31-June)')
start_dates.append(datetime.datetime(year=2020, month=6, day=30))
end_dates.append(datetime.datetime(year=2020, month=8, day=31))
deltas.append('(1-July through 31-Aug)')
start_dates.append(datetime.datetime(year=2020, month=8, day=31))
end_dates.append(datetime.datetime(year=2020, month=10, day=15))
deltas.append('(1-Sep through 15-Oct)')
start_dates.append(datetime.datetime(year=2020, month=10, day=15))
end_dates.append(datetime.datetime(year=2020, month=11, day=23))
deltas.append('(16-Oct through 23-Nov)')
# start_dates.append(datetime.datetime(year=2020, month=1, day=1))
# end_dates.append(datetime.datetime(year=2020, month=11, day=23))
# deltas.append('(Total)')
for dd, delta_str in enumerate(deltas):
#%% Filter covid data on Milwaukee and on desired dates
start_date = start_dates[dd]
end_date = end_dates[dd]
# total - from latest date
total = covid_tract_mke[covid_tract_mke.Date==latest_date]
total = total.set_index('GEOID')
# only keep columns you can do math on
col_list = ['POSITIVE', 'NEGATIVE', 'HOSP_YES', 'DEATHS']
total_end = covid_tract_mke.loc[covid_tract_mke.Date == end_date]
total_end = total_end.set_index('GEOID')[col_list]
if start_date > datetime.datetime(year=2020, month=4, day=11):
total_start = covid_tract_mke.loc[covid_tract_mke.Date == start_date]
total_start = total_start.set_index('GEOID')[col_list]
timeperiod = total_end - total_start
else:
timeperiod = total_end
# get rid of negative values - weird that this is needed
timeperiod.POSITIVE = (timeperiod.POSITIVE >=0) * timeperiod.POSITIVE
timeperiod.HOSP_YES = (timeperiod.HOSP_YES >=0) * timeperiod.HOSP_YES
mketracts['Tested (Total)'] = total['POSITIVE'] + total['NEGATIVE']
mketracts['Cases (Total)'] = total['POSITIVE']
mketracts['Hosp (Total)'] = total['HOSP_YES']
mketracts['Deaths (Total)'] = total['DEATHS']
mketracts['Tested '+delta_str] = timeperiod['POSITIVE'] + timeperiod['NEGATIVE']
mketracts['Cases '+delta_str] = timeperiod['POSITIVE']
mketracts['Hosp '+delta_str] = timeperiod['HOSP_YES']
mketracts['Deaths '+delta_str] = timeperiod['DEATHS']
mketracts['Tested per 1K (Total)'] = mketracts['Tested (Total)'] / mketracts['Population'] * 1000
mketracts['Cases per 1K (Total)'] = mketracts['Cases (Total)'] / mketracts['Population'] * 1000
mketracts['Hosp per 1K (Total)'] = mketracts['Hosp (Total)'] / mketracts['Population'] * 1000
mketracts['Tested per 1K '+delta_str] = mketracts['Tested '+delta_str] / mketracts['Population'] * 1000
mketracts['Cases per 1K '+delta_str] = mketracts['Cases '+delta_str] / mketracts['Population'] * 1000
mketracts['Hosp per 1K '+delta_str] = mketracts['Hosp '+delta_str] / mketracts['Population'] * 1000
# fill nan
mketracts.fillna(0, inplace=True)
# # chloropleths by population, cases, hosp, deaths
# mketracts.plot(column='Population', edgecolor='w', linewidth=0.5, legend=True)
# mketracts.plot(column='Total Cases', edgecolor='w', linewidth=0.5, legend=True, cmap='Blues')
# mketracts.plot(column='Cases per 10K', edgecolor='w', linewidth=0.5, legend=True, cmap='Blues')
# mketracts.plot(column='Total Hosp', edgecolor='w', linewidth=0.5, legend=True, cmap='Oranges')
# mketracts.plot(column='Hosp per 10K', edgecolor='w', linewidth=0.5, legend=True, cmap='Oranges')
# mketracts.plot(column='Total Deaths', edgecolor='w', linewidth=0.5, legend=True, cmap='Reds')
# deaths by tract do not sum up to the state deaths, less than half accounted for.
# positives and negatives do.
# HOSP_YES is close but about 10% off.
#%% Color-bubble maps
fig_height = 700
tract_names = ['Tract ' + n[5:] for n in mketracts.index]
#%% Plots for total
# select_str = delta_str
# # adjust factor lower for larger bubbles, max lower for more colorful bubbles
# cases_size_factor = 2
# cases_color_max = 120
#%% Plots for timeperiod
select_str = delta_str
cases_size_factor = 0.8
cases_color_max = 40
#%% Ranges for hosp and tests plots
cases_color_range = [0, cases_color_max]
hosp_size_factor = cases_size_factor * 0.08 # so that bubbles are same size if hosp = 8% of cases
hosp_color_range = [0, cases_color_max*0.08]
tested_size_factor = cases_size_factor / 0.15 # so that bubbles are the same size if cases = 15% of tested
tested_color_range = [0, cases_color_max/0.15]
#%% Color-bubble plots
# Cases color-bubble
fig = covid.plotly_colorbubble(
mketracts,
sizecol='Cases '+select_str,
colorcol='Cases per 1K '+select_str,
size_factor=cases_size_factor,
color_range=cases_color_range,
colorscale='Blues',
location_names=tract_names,
plotlabels=dict(
title='Milwaukee: Cases by Census Tract<br>'+select_str,
sizelabel='Number of cases',
colorlabel='Cases per 1K',
),
savefile='.\\docs\\assets\\plotly\\Map-Cases-Milwaukee.html',
fig_height=fig_height,
)
fig.write_image(
'.\\docs\\assets\\Map-Cases-Milwaukee-'+str(dd)+'.png',
width=600,
height=700,
engine='kaleido',
)
# # Tests color-bubble
# fig = covid.plotly_colorbubble(
# mketracts,
# sizecol='Tested '+select_str,
# colorcol='Tested per 1K '+select_str,
# size_factor=tested_size_factor,
# color_range=tested_color_range,
# colorscale='Greens',
# location_names=tract_names,
# plotlabels=dict(
# title='Milwaukee: Tests by Census Tract<br>'+select_str,
# sizelabel='Number tested',
# colorlabel='Tested per 1K',
# ),
# savefile='.\\docs\\assets\\plotly\\Map-Tested-Milwaukee.html',
# fig_height=fig_height,
# )
# fig.write_image(
# '.\\docs\\assets\\Map-Tested-Milwaukee-Total_2020-11-27.png',
# width=700,
# height=700,
# engine='kaleido',
# )
# Hospitalizations color-bubble
fig = covid.plotly_colorbubble(
mketracts,
sizecol='Hosp '+select_str,
colorcol='Hosp per 1K '+select_str,
size_factor=hosp_size_factor,
color_range=hosp_color_range,
colorscale='Oranges',
location_names=tract_names,
plotlabels=dict(
title='Milwaukee: Hospitalizations by Census Tract<br>'+select_str,
sizelabel='Number of hosp',
colorlabel='Hosp per 1K',
),
savefile='.\\docs\\assets\\plotly\\Map-Hosp-Milwaukee.html',
fig_height=fig_height,
)
fig.write_image(
'.\\docs\\assets\\Map-Hosp-Milwaukee-'+str(dd)+'.png',
width=600,
height=700,
engine='kaleido',
)