| from datamodel:"Risk" | table source risk_factor_add risk_factor_mult risk_score
| from datamodel:"Risk"."All_Risk"
| search risk_notable_sources
| stats count by search_name
| eval avg=round(count/30)
| eval velocity=case(avg<=1,1.25,avg>1 AND avg<=50,1,avg>50 AND avg<=100,0.75,avg>100 AND avg<=500,0.5,avg>500,0.25)
| outputlookup risk_velocity.csv
| eval risk_ScoreSum=if(risk_ScoreSum>500, risk_ScoreSum/5, risk_ScoreSum)
| eval new_risk_score=(usecase_weight+mitre_weight)*velocity
get_notable_index
| eval get_event_id_meval
, rule_id=event_id, temp_time=time()+86400
| suppression_extract
| search NOT suppression=*
| lookup update=true correlationsearches_lookup _key as source OUTPUTNEW default_disposition
| lookup update=true event_time_field=temp_time incident_review_lookup rule_id OUTPUT disposition as new_disposition
| eval disposition=if(isnotnull(new_disposition),new_disposition,default_disposition)
| get_notable_disposition
| stats count as event_count by disposition_label, search_name, severity
| eval closed_weighted_score = case(event_count <= 10, 1.5, event_count <= 20, 1, event_count > 20, 0.5)
| outputlookup alert_disposition_tracking.csv
| eval new_risk_score=((usecase_weight+mitre_weight)*velocity)*closed_weighted_score