Skip to content

Commit

Permalink
Merge pull request #33 from math-comp/more-test-cases
Browse files Browse the repository at this point in the history
More test cases
  • Loading branch information
pi8027 authored Nov 5, 2021
2 parents 094be3e + 710064d commit 8481446
Show file tree
Hide file tree
Showing 4 changed files with 244 additions and 4 deletions.
241 changes: 241 additions & 0 deletions examples/test_ssreflect.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
From Coq Require Import BinInt Zify.
From mathcomp Require Import all_ssreflect zify ssrZ.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

(* FIXME: dual instances are not exported *)
Import Order.Theory.

Local Delimit Scope Z_scope with Z.

Implicit Types (b : bool) (n m : nat).

(******************************************************************************)
(* ssrbool *)
(******************************************************************************)

Fact test_andb b1 b2 : b1 (+) b2 = Bool.eqb b1 (~~ b2).
Proof. zify_op; reflexivity. Qed.

Fact test_eqb b1 b2 : eqb b1 b2 = Bool.eqb b1 b2.
Proof. zify_op; reflexivity. Qed.

Fact test_eq_op_bool b1 b2 : (b1 == b2) = Bool.eqb b1 b2.
Proof. zify_op; reflexivity. Qed.

Fact test_le_bool b1 b2 : (b1 <= b2)%O = implb b1 b2.
Proof. zify_op; reflexivity. Qed.

Fact test_ge_bool b1 b2 : (b1 >= b2)%O = implb b2 b1.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_le_bool (b1 b2 : bool^d) : (b1 <=^d b2)%O = implb b2 b1.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_ge_bool (b1 b2 : bool^d) : (b1 >=^d b2)%O = implb b1 b2.
Proof. zify_op; reflexivity. Qed.

Fact test_lt_bool b1 b2 : (b1 < b2)%O = ~~ b1 && b2.
Proof. zify_op; reflexivity. Qed.

Fact test_gt_bool b1 b2 : (b1 > b2)%O = ~~ b2 && b1.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_lt_bool (b1 b2 : bool^d) : (b1 <^d b2)%O = b1 && ~~ b2.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_gt_bool (b1 b2 : bool^d) : (b1 >^d b2)%O = b2 && ~~ b1.
Proof. zify_op; reflexivity. Qed.

(* FIXME: ge, gt *)

Fact test_min_bool b1 b2 : Order.min b1 b2 = b1 && b2.
Proof. zify_op; reflexivity. Qed.

Fact test_max_bool b1 b2 : Order.max b1 b2 = b1 || b2.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_min_bool (b1 b2 : bool^d) : Order.dual_min b1 b2 = b1 || b2.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_max_bool (b1 b2 : bool^d) : Order.dual_max b1 b2 = b1 && b2.
Proof. zify_op; reflexivity. Qed.

Fact test_meet_bool b1 b2 : (b1 `&` b2)%O = b1 && b2.
Proof. zify_op; reflexivity. Qed.

Fact test_join_bool b1 b2 : (b1 `|` b2)%O = b1 || b2.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_meet_bool (b1 b2 : bool^d) : (b1 `&^d` b2)%O = b1 || b2.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_join_bool (b1 b2 : bool^d) : (b1 `|^d` b2)%O = b1 && b2.
Proof. zify_op; reflexivity. Qed.

Fact test_bottom_bool : 0%O = false :> bool.
Proof. zify_op; reflexivity. Qed.

Fact test_top_bool : 1%O = true :> bool.
Proof. zify_op; reflexivity. Qed.

(* FIXME: Notations 0^d and 1^d are broken. *)
Fact test_dual_bottom_bool : 0%O = true :> bool^d.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_top_bool : 1%O = false :> bool^d.
Proof. zify_op; reflexivity. Qed.

Fact test_sub_bool b1 b2 : (b1 `\` b2)%O = b1 && ~~ b2.
Proof. zify_op; reflexivity. Qed.

Fact test_compl_bool b : (~` b)%O = ~~ b.
Proof. zify_op; reflexivity. Qed.

(******************************************************************************)
(* ssrnat *)
(******************************************************************************)

Fact test_eqn n m : eqn n m = Z.eqb (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_eq_op_nat n m : (n == m) = Z.eqb (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_addn_rec n m : Z.of_nat (n + m)%Nrec = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_addn n m : Z.of_nat (n + m) = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_addn_trec n m :
Z.of_nat (NatTrec.add n m) = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_subn_rec n m :
Z.of_nat (n - m)%Nrec = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_subn n m :
Z.of_nat (n - m) = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_muln_rec n m : Z.of_nat (n * m)%Nrec = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_muln n m : Z.of_nat (n * m) = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_muln_trec n m :
Z.of_nat (NatTrec.mul n m) = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_leq n m : (n <= m) = (Z.of_nat n <=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

(* FIXME: geq, ltn, gtn *)

Fact test_minn n m : Z.of_nat (minn n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_maxn n m : Z.of_nat (maxn n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_nat_of_bool b : Z.of_nat (nat_of_bool b) = Z.b2z b.
Proof. zify_op; reflexivity. Qed.

Fact test_double n : Z.of_nat n.*2 = (2 * Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_double_trec n : Z.of_nat (NatTrec.double n) = (2 * Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_expn n m : Z.of_nat (n ^ m) = (Z.of_nat n ^ Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_expn_trec n m :
Z.of_nat (NatTrec.exp n m) = (Z.of_nat n ^ Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_eq_op_N (n m : N) : (n == m) = (Z.of_N n =? Z.of_N m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_nat_of_pos p : Z.of_nat (nat_of_pos p) = Z.pos p.
Proof. zify_op; reflexivity. Qed.

Fact test_nat_of_bin (n : N) : Z.of_nat (nat_of_bin n) = Z.of_N n.
Proof. zify_op; reflexivity. Qed.

Fact test_pos_of_nat n m :
Z.pos (pos_of_nat n m) = Z.max 1 (Z.of_nat n * 2 - Z.of_nat m + 1).
Proof. zify_op; reflexivity. Qed.

Fact test_bin_of_nat n : Z.of_N (bin_of_nat n) = Z.of_nat n.
Proof. zify_op; reflexivity. Qed.

Fact test_le_nat n m : (n <= m)%O = (Z.of_nat n <=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_ge_nat n m : (n >= m)%O = (Z.of_nat m <=? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_le_nat (n m : nat^d) :
(n <=^d m)%O = (Z.of_nat n >=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_ge_nat (n m : nat^d) :
(n >=^d m)%O = (Z.of_nat m >=? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_lt_nat n m : (n < m)%O = (Z.of_nat n <? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_gt_nat n m : (n > m)%O = (Z.of_nat m <? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_lt_nat (n m : nat^d) :
(n <^d m)%O = (Z.of_nat n >? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.

Fact test_dual_gt_nat (n m : nat^d) :
(n >^d m)%O = (Z.of_nat m >? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.

(* FIXME: ge, gt *)

Fact test_min_nat n m :
Z.of_nat (Order.min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_max_nat n m :
Z.of_nat (Order.max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_dual_min_nat (n m : nat^d) :
Z.of_nat (Order.dual_min n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_dual_max_nat (n m : nat^d) :
Z.of_nat (Order.dual_max n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_meet_nat n m : Z.of_nat (n `&` m)%O = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_join_nat n m : Z.of_nat (n `|` m)%O = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_dual_meet_nat (n m : nat^d) :
Z.of_nat (n `&^d` m)%O = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_dual_join_nat (n m : nat^d) :
Z.of_nat (n `|^d` m)%O = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.

Fact test_bottom_nat : Z.of_nat 0%O = 0%Z.
Proof. zify_op; reflexivity. Qed.

(* TODO: division / modulo *)
3 changes: 1 addition & 2 deletions theories/ssrZ.v
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
From Coq Require Import ZArith ZifyClasses Zify ZifyInst ZifyBool.
From Coq Require Export Lia.
From Coq Require Import ZArith.

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import div choice fintype tuple finfun bigop finset prime.
Expand Down
2 changes: 1 addition & 1 deletion theories/zify_algebra.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
From Coq Require Import ZArith ZifyClasses Zify ZifyInst ZifyBool.
From Coq Require Import ZArith ZifyClasses ZifyBool.
From Coq Require Export Lia.

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
Expand Down
2 changes: 1 addition & 1 deletion theories/zify_ssreflect.v
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
From Coq Require Import ZArith ZifyClasses Zify ZifyInst ZifyBool.
From Coq Require Import ZArith ZifyClasses ZifyInst ZifyBool.
From Coq Require Export Lia.

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
Expand Down

0 comments on commit 8481446

Please sign in to comment.