-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomplete_dioid.v
803 lines (684 loc) · 30.3 KB
/
complete_dioid.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice order.
From mathcomp Require Import fintype ssrnat bigop ssralg boolp classical_sets.
Require Import dioid complete_lattice.
(******************************************************************************)
(* The algebraic structure of complete dioids, as described in: *)
(* Michel Minoux, Michel Gondran. *)
(* 'Graphs, Dioids and Semirings. New Models and Algorithms.' *)
(* Springer, 2008 *)
(* *)
(* This file defines for each structure its type, its packers and its *)
(* canonical properties: *)
(* *)
(* * CompleteDioid (dioid with infinte distributivity): *)
(* (From GONDRAN-MINOUX définition 6.1.8) *)
(* CompleteDioid.yype == interface type for complete Dioid structure *)
(* CompleteDioid_of_Dioid_and_CompleteLattice.Build D mulDl mulDr *)
(* == packs a CompleteDioid; the carrier type D must *)
(* have both a Dioid and a CompleteLattice canonical *)
(* structure (see complete_lattice.v). *)
(* a^i == the power i of a *)
(* a^* == the kleene star operator *)
(* (infinite sum of a^i, i >= 0) *)
(* a^+ == the 'plus' operator (infinite sum of a^i, i > 0) *)
(* a / b == the residuation operator: *)
(* x * b <= a <-> x <= a / b *)
(* [CompleteDioid of U by <:] == CompleteDioid mixin for a subType whose base *)
(* type is both a Dioid and a CompleteLattice. *)
(* *)
(* * ComCompleteDioid: *)
(* ComCompleteDioid.type == interface type for complete commutative dioid *)
(* structure *)
(* ComCompleteDioid_of_CompleteDioid.Build D mulC *)
(* == packs mulC into a ComCompleteDioid; the carrier *)
(* type D must have a CompleteDioid canonical *)
(* structure. *)
(* ComCompleteDioid_of_ComDioid_and_CompleteLattice.Build D mulDl *)
(* == packs mulDl into a ComCompleteDioid; the carrier *)
(* type D must have both a ComDioid and a *)
(* CompleteLattice canonical structure. *)
(* ComCompleteDioid_of_CompleteLattice.Build D addA addC add0l mulA mulC *)
(* mul1l mulDl mul0l le_def set_mulDl *)
(* == build a ComCompleteDioid structure from the *)
(* algebraic properties of its operations. *)
(* The carrier type T must have a CompleteLattice *)
(* canonical structure (see complete_lattice.v). *)
(* *)
(* Interesting lemmas: *)
(* * forall a and b in a complete dioid, a^* * b is the least solution of *)
(* x = a * x + b *)
(* * forall a and b in a complete commutative dioid, (a + b)^* = a^* * b ^* *)
(* *)
(* Notations are defined in scope dioid_scope (delimiter %D). *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "x ^+" (at level 2, format "x ^+").
Reserved Notation "x ^*" (at level 2, format "x ^*").
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Local Open Scope order_scope.
Local Open Scope dioid_scope.
Import Order.Theory GRing.Theory.
HB.mixin Record isCompleteDioid d D of Dioid d D & CompleteLattice d D := {
set_mulDl : forall (a : D) (B : set D),
a * set_join B = set_join [set a * x | x in B];
set_mulDr : forall (a : D) (B : set D),
set_join B * a = set_join [set x * a | x in B];
}.
#[short(type="dioidCompleteLatticeType")]
HB.structure Definition DioidCompleteLattice d :=
{ D of Dioid d D & CompleteLattice d D }.
#[short(type="completeDioidType")]
HB.structure Definition CompleteDioid d :=
{ D of DioidCompleteLattice d D & isCompleteDioid d D }.
Section CompleteDioidTheory.
Variables (disp : unit) (D : completeDioidType disp).
Implicit Types a b c : D.
Implicit Types B : set D.
Notation set_add := set_join.
Lemma bottom_zero : 0%O = 0%R :> D.
Proof. by apply/le_anti; rewrite le0x le0d. Qed.
Lemma set_addDl a B : set_add (a |` B) = a + set_add B.
Proof.
apply/le_anti/andP; split.
- apply: set_join_le_ub => x [-> | Bx]; [exact: led_addr|].
by apply: le_trans (led_addl _ _); apply: set_join_ub.
- by rewrite led_addE set_joinU_ge_r andbT -[leLHS](set_join1 a) set_joinU_ge_l.
Qed.
Lemma add_join a b : a + b = a `|` b.
Proof. by rewrite -[in LHS](set_join1 b) -set_addDl set_joinU !set_join1. Qed.
Lemma set_addU A B : set_add (A `|` B) = set_add A + set_add B.
Proof. by rewrite set_joinU add_join. Qed.
Lemma add_d1 : @right_zero D D 1%O +%R.
Proof. by move=> x; apply/eqP; rewrite -le_def lex1. Qed.
Lemma add_1d : @left_zero D D 1%O +%R.
Proof. by move=> x; rewrite addrC add_d1. Qed.
Lemma set_add0 (F : nat -> D) : set_add [set F i | i in [set x | 'I_0 x]] = 0%R.
Proof.
by rewrite -bottom_zero -set_join0; congr set_add; rewrite -subset0 => x [[]].
Qed.
Lemma set_add1 (F : nat -> D) : set_add [set F i | i in [set x | 'I_1 x]] = F O.
Proof.
rewrite -(addr0 (F O)) -bottom_zero -set_join0 -set_addDl setU0; congr set_add.
by rewrite predeqP => x; split=> [[y] | ->]; [rewrite ord1|exists ord0].
Qed.
Lemma set_addS (F : nat -> D) k :
set_add [set F i | i in [set x | 'I_k.+1 x]]
= set_add [set F i | i in [set x | 'I_k x]] + F k.
Proof.
rewrite addrC -set_addDl; congr set_add; rewrite predeqP => x; split.
- move=> -[i Hi] <-.
move: (leq_ord i); rewrite leq_eqVlt => /orP[/eqP -> | {}Hi]; [by left|].
by right; exists (Ordinal Hi).
- move=> [-> | [i _ <-]]; [by exists ord_max|].
by exists (inord i); rewrite ?inordK // ltnS ltnW.
Qed.
Lemma set_add_led (F : nat -> D) k :
set_add [set F i | i in [set x | 'I_k x]] <= set_add (range F).
Proof.
elim: k => [|k IHk].
- set S := image _ _.
have ->: S = set0 by rewrite -subset0 => x [[]].
by rewrite set_join0 le0x.
- rewrite set_addS led_addE IHk /=.
by apply: set_join_ub; exists k.
Qed.
Lemma set_add_lim_nat (F : nat -> D) l :
(forall k, set_add [set F i | i in [set x | 'I_k x]] <= l) ->
set_add (range F) <= l.
Proof.
move=> H; apply: set_join_le_ub => _ [i _ <-].
by move: (H i.+1); apply/le_trans/set_join_ub; exists ord_max.
Qed.
Lemma set_add_led_set (F F' : nat -> D) :
(forall k, set_add [set F i | i in [set x | 'I_k x]]
<= set_add [set F' i | i in [set x | 'I_k x]]) ->
set_add (range F) <= set_add (range F').
Proof.
move=> H; apply: set_add_lim_nat => k.
exact/(le_trans (H k))/set_add_led.
Qed.
Section KleeneOperatorsDefinitions.
Definition exp a n := iterop n *%R a 1%R.
Definition op_kleene a := set_add (range (exp a)).
Definition op_plus a := set_add (range (fun i => exp a i.+1)).
Definition div a b := set_add [set c | c * b <= a].
End KleeneOperatorsDefinitions.
Local Notation "a ^ i" := (exp a i) : dioid_scope.
Local Notation "a ^*" := (op_kleene a) : dioid_scope.
Local Notation "a ^+" := (op_plus a) : dioid_scope.
Local Notation "a / b" := (div a b) : dioid_scope.
Section KleeneStar.
Lemma exp0 a : a ^ 0 = 1%R.
Proof. by []. Qed.
Lemma expS i a : a ^ (i.+1) = a * (a ^ i).
Proof. by case: i => //; rewrite exp0 mulr1. Qed.
Lemma expSr i a : a ^ i.+1 = a ^ i * a.
Proof.
elim: i => [ | i Hi]; first by rewrite exp0 mul1r.
by rewrite expS {1}Hi expS mulrA.
Qed.
Lemma kleeneSr a : a^* = 1 + a^+.
Proof.
rewrite -(exp0 a) -set_addDl /op_kleene.
apply: f_equal; rewrite predeqP => b; split.
- by move=> [[| i] _ <-]; [left|right; exists i].
- by move=> [-> | [i _ <-]]; [exists O|exists i.+1].
Qed.
Lemma plusSr a : a ^+ = a * a ^*.
Proof.
rewrite set_mulDl /op_plus /op_kleene.
apply: f_equal; rewrite predeqP => b; split.
- by move=> [i _ <-]; rewrite expS; exists (a ^ i); [exists i|].
- by move=> [c [i _ <-] <-]; rewrite -expS; exists i.
Qed.
Lemma plus_le_kleene a : a^+ <= a^*.
Proof. by rewrite le_def kleeneSr addrCA adddd. Qed.
Lemma le_plus a : a <= a ^+.
Proof. by rewrite le_def plusSr kleeneSr mulrDr mulr1 addrA adddd. Qed.
Lemma le_kleene a : a <= a^*.
Proof. exact/(le_trans (le_plus a))/plus_le_kleene. Qed.
Lemma kleene_mul_expl a n : a ^ n * a ^* <= a^*.
Proof.
elim: n => [|n IHn]; [by rewrite mul1r|].
rewrite expSr -mulrA.
move: IHn; apply/le_trans/led_mul2l.
rewrite -plusSr; apply: plus_le_kleene.
Qed.
Lemma kleene_monotony a b : a <= b -> a ^* <= b ^*.
Proof.
move=> Hab.
apply: set_add_led_set => k.
have Hyp : forall i, a ^ i <= b ^ i.
elim=> [|i IHi].
- by rewrite exp0.
- by rewrite !expS; apply: led_mul.
elim: k => [|k IHk].
- by rewrite set_add0 le0d.
- rewrite !set_addS; exact: led_add.
Qed.
Lemma kleene_1r a : (a + 1) ^* = a ^*.
Proof.
apply/le_anti/andP; split; [|exact/kleene_monotony/led_addr].
suff Hyp : forall i, (a + 1) ^ i = set_add [set a ^ j | j in [set x | 'I_i.+1 x]].
{ apply: set_add_led_set => k.
elim: k => [ | k IHk]; [by rewrite set_add0 le0d|].
rewrite !set_addS Hyp.
rewrite -[in X in _ <= X](adddd (set_add _)) -addrA.
apply: (led_add IHk).
by rewrite set_addS. }
elim=> [ | i IHi]; [by rewrite set_add1 !exp0|].
rewrite expS mulrDl mul1r IHi set_mulDl.
set B' := [set a ^ j | j in [set j | (1 <= j <= i)%N]].
rewrite [X in set_join X](_ : _ = a ^ i.+1 |` B'); last first.
{ rewrite predeqP => x; split.
- move=> -[y [[j Hj] _ <-] <-].
rewrite expS /= -!expS.
move: Hj; rewrite leq_eqVlt ltnS => /orP[/eqP [->] | Hj]; [by left|].
by right; exists j.+1.
- move=> [->|]; [by rewrite expS; exists (a ^ i) => //; exists ord_max|].
move=> -[[//|j] /andP [Hj Hji] <-]; rewrite expS; exists (a ^ j) => //.
by move: Hji => /ltnW; rewrite -ltnS => Hji; exists (Ordinal Hji). }
rewrite -[set_join]/set_add set_addDl.
rewrite (_ : image _ _ = (1%R |` B')); last first.
{ rewrite predeqP => x; split.
{ move=> -[[[|j] Hj] _ <-]; [by left; rewrite exp0|].
by right; exists (Ordinal Hj). }
move=> [-> | [j /= Hj <-]]; [by rewrite -(exp0 a); exists ord0|].
by move: Hj => /andP[_]; rewrite -ltnS => Hj; exists (Ordinal Hj). }
rewrite set_addDl.
rewrite (addrC (a ^ 0)) addrA -(addrA (a ^ i.+1)) adddd addrC -!set_addDl.
apply: f_equal; rewrite predeqP => x; split.
- move=> [-> | [-> | [j /= Hj <-]]].
+ by exists ord0.
+ by exists ord_max.
+ move: Hj => /andP[_]; rewrite -ltnS; move=> /ltnW; rewrite -ltnS => Hj.
by exists (Ordinal Hj).
- move=> -[[[|j] Hj] _ <-]; [by left|right].
move: Hj; rewrite /nat_of_ord !ltnS leq_eqVlt => /orP[/eqP -> | ]; [by left|].
by rewrite -ltnS => Hj; right; exists (Ordinal Hj).
Qed.
Lemma kleene_sqr a : a^* * a^* = a^*.
Proof.
rewrite {1}/op_kleene set_mulDr.
set B' := (a ^* |` (range (fun i => a ^ i.+1 * a ^*))).
rewrite (_ : image _ _ = B'); last first.
{ rewrite predeqP => x; split.
- by move=> -[_ [[|i] _ <-] <-]; [left; rewrite exp0 mul1r|right; exists i].
- move=> [-> | [i _ <-]]; [by exists 1%R; [exists O|rewrite mul1r]|].
by exists (a ^ i.+1); [exists i.+1|]. }
rewrite -[set_join]/set_add set_addDl.
apply/eqP; rewrite addrC -le_def; apply: set_add_lim_nat.
elim=> [|k].
- by rewrite (set_add0 (fun i => a ^ i.+1 * _)) le0d.
- rewrite (set_addS (fun i => a ^ i.+1 * _)).
rewrite !le_def => /eqP IHk.
rewrite addrAC IHk addrC -le_def.
exact: kleene_mul_expl.
Qed.
Lemma kleene_exp a i : (1 <= i)%N -> (a ^*) ^ i = a ^*.
Proof.
case: i => [// | ] i _; elim: i => [// | i IHi].
by rewrite expS IHi kleene_sqr.
Qed.
Lemma kleene_kleene a : (a ^*) ^* = a ^*.
Proof.
rewrite kleeneSr /op_plus.
rewrite (_ : image _ _ = a ^* |` set0).
by rewrite setU0 set_join1 kleeneSr addrA adddd.
rewrite predeqP => x; split.
- move=> [i _ <-]; left; exact: kleene_exp.
- by move=> [-> | //]; exists O.
Qed.
Theorem kleene_star_eq a b : a ^* * b = a * (a ^* * b) + b.
Proof. by rewrite mulrA -plusSr -{3}(mul1r b) -mulrDl kleeneSr addrC. Qed.
Theorem kleene_star_least a b : forall x, (x = a * x + b) -> a ^* * b <= x.
Proof.
move=> x Hx.
rewrite set_mulDr.
rewrite [X in set_join X](_ : _ = [set (a ^ i) * b | i in setT]); last first.
rewrite predeqP => y; split.
- by move=> [_ [i _ <-] <-]; exists i.
- by move=> [i _ <-]; exists (a ^ i); [exists i|].
apply: set_add_lim_nat; elim=> [ | k IHk].
by rewrite le_def (set_add0 (fun i => a ^ i * b)) add0r.
rewrite (set_addS (fun i => a ^ i * b)) led_addE IHk /=.
elim: k {IHk} => [ | k IHk]; [by rewrite mul1r Hx led_addl|].
rewrite expS.
have Ha : a * x <= x; [by rewrite {2}Hx led_addr|].
by apply: (le_trans _ Ha); rewrite -mulrA led_mul2l.
Qed.
End KleeneStar.
Section ResiduationTheory.
Lemma div_mul_le a b : (a / b)%D * b <= a.
Proof. by rewrite set_mulDr; apply: set_join_le_ub => y [z + <-]. Qed.
Lemma mul_div_le a b : a <= (a * b) / b.
Proof. exact/set_join_ub/lexx. Qed.
Lemma mul_div_equiv a b x : (x * a <= b) = (x <= b / a).
Proof.
apply/idP/idP => H; [exact: set_join_ub|].
by move: (div_mul_le b a); apply/le_trans/led_mul2r.
Qed.
Lemma div_top x : 1%O / x = 1%O.
Proof. apply/le_anti /andP; split; [|rewrite -mul_div_equiv]; exact: lex1. Qed.
Lemma led_divl a b c : a <= b -> a / c <= b / c.
Proof. rewrite -mul_div_equiv; exact/le_trans/div_mul_le. Qed.
Lemma led_divr a b c : a <= b -> c / b <= c / a.
Proof.
move=> Hab; rewrite -mul_div_equiv.
exact/(le_trans (led_mul2l _ Hab))/div_mul_le.
Qed.
Lemma led_div a b c d : a <= b -> d <= c -> a / c <= b / d.
Proof.
move=> Hab Hcd; rewrite -mul_div_equiv.
apply/(le_trans _ Hab); rewrite mul_div_equiv.
exact: led_divr.
Qed.
Lemma addd_div_le a b c : (a / c)%D + (b / c)%D <= (a + b) / c.
Proof.
rewrite led_addE.
apply/andP; split; apply: led_divl; [exact: led_addr|exact: led_addl].
Qed.
Lemma div_mul a b c : a / (b * c) = a / c / b.
Proof.
apply/le_anti/andP; split.
- by rewrite -!mul_div_equiv -mulrA; apply: div_mul_le.
- by rewrite -mul_div_equiv mulrA !mul_div_equiv; exact: lexx.
Qed.
Lemma mul_divA a b c : a * (b / c)%D <= (a * b) / c.
Proof. rewrite -mul_div_equiv -mulrA; exact/led_mul2l/div_mul_le. Qed.
Lemma kleene_div_equiv a : (a == a ^*) = (a == a / a).
Proof.
apply/idP/idP => /eqP.
- move=> ->.
apply/eqP/le_anti/andP; split.
+ apply: set_join_le_ub => _ [i _ <-].
rewrite -mul_div_equiv.
exact: kleene_mul_expl.
+ apply: set_join_le_ub => x /=.
rewrite {1}kleeneSr mulrDr mulr1.
by rewrite led_addE => /andP[].
- move=> Ha; apply/eqP/le_anti/andP; split; [exact: le_kleene|].
apply: set_join_le_ub => _ [i _ <-].
elim: i => [ | i IHi]; [by rewrite exp0 Ha -mul_div_equiv mul1r|].
by rewrite expSr mul_div_equiv -Ha.
Qed.
Lemma mul_kleene a b : a * b ^* = (a * b ^*) / b ^*.
Proof.
apply/le_anti/andP; split.
- by rewrite -mul_div_equiv -mulrA kleene_sqr.
- apply: set_join_le_ub => x.
apply: le_trans.
by rewrite kleeneSr mulrDr mulr1 led_addr.
Qed.
Lemma div_kleene a b : a / b ^* = (a / b ^*)%D * b ^*.
Proof.
apply/le_anti/andP; split; last first.
- by rewrite -mul_div_equiv -mulrA kleene_sqr div_mul_le.
- apply: set_join_le_ub => x /=.
rewrite mul_div_equiv => Hx.
apply: (le_trans Hx).
by rewrite kleeneSr mulrDr mulr1 led_addr.
Qed.
End ResiduationTheory.
End CompleteDioidTheory.
Notation "a ^ i" := (exp a i) : dioid_scope.
Notation "a ^*" := (op_kleene a) : dioid_scope.
Notation "a ^+" := (op_plus a) : dioid_scope.
Notation "a / b" := (div a b) : dioid_scope.
#[short(type="comCompleteDioidType")]
HB.structure Definition ComCompleteDioid d :=
{ D of GRing.ComSemiRing D & CompleteDioid d D }.
HB.factory Record isComCompleteDioid d D
of ComDioid d D & CompleteLattice d D := {
set_mulDl : forall (a : D) (B : set D),
a * set_join B = set_join [set a * x | x in B];
}.
HB.builders Context d D of isComCompleteDioid d D.
Lemma set_mulDr a (B : set D) :
set_join B * a = set_join [set x * a | x in B].
Proof.
by rewrite mulrC set_mulDl; apply: f_equal; rewrite predeqP => x; split;
(move=> -[y Hy <-]; exists y; [|rewrite mulrC]).
Qed.
HB.instance Definition _ := isCompleteDioid.Build d D set_mulDl set_mulDr.
HB.end.
HB.factory Record CompleteLattice_isComCompleteDioid d D
of CompleteLattice d D := {
zero : D;
add : D -> D -> D;
one : D;
mul : D -> D -> D;
addA : associative add;
addC : commutative add;
add0d : left_id zero add;
adddd : idempotent add;
mulA : associative mul;
mulC : commutative mul;
mul1d : left_id one mul;
mulDl : left_distributive mul add;
mul0d : left_zero zero mul;
oner_neq0 : one != zero;
le_def : forall (a b : D), (a <= b) = (add a b == b);
set_mulDl : forall (a : D) (B : set D),
mul a (set_join B) = set_join [set mul a x | x in B];
}.
HB.builders Context d D of CompleteLattice_isComCompleteDioid d D.
HB.instance Definition _ := POrder_isComDioid.Build d D
addA addC add0d adddd mulA mulC mul1d mulDl mul0d oner_neq0 le_def.
HB.instance Definition _ := isComCompleteDioid.Build d D set_mulDl.
HB.end.
Section ComCompleteDioidTheory.
Variables (disp : unit) (D : comCompleteDioidType disp).
Implicit Types a b : D.
Section ComResiduationTheory.
Lemma divAC : right_commutative (@div _ D).
Proof.
move=> a b c; apply/le_anti/andP; split; rewrite -!mul_div_equiv.
- by rewrite -mulrA (mulrC b) mulrA !mul_div_equiv.
- by rewrite -mulrA (mulrC c) mulrA !mul_div_equiv.
Qed.
Lemma kleene_add_mul a b : (a + b) ^* = a ^* * b ^*.
Proof.
apply/le_anti/andP; split.
- apply: set_join_le_ub => _ [i _ <-].
elim: i => [ | i IHi].
+ rewrite exp0 -(mulr1 1%R).
apply: led_mul.
* rewrite kleeneSr -{1}(addr0 1%R).
exact/led_add2l/le0d.
* rewrite kleeneSr -{1}(addr0 1%R).
exact/led_add2l/le0d.
+ rewrite expS.
apply: (le_trans (led_mul2l _ IHi)).
rewrite mulrDl mulrA -plusSr (mulrC b) -mulrA -(mulrC b) -plusSr.
rewrite !kleeneSr !mulrDl !mulrDr !mulr1 !mul1r.
rewrite !addrA (addrC (a^+)) addrC !addrA adddd.
rewrite [X in _ <= X]addrC -!addrA (addrC 1%R) (addrC (a^+)) !addrA.
exact: led_addr.
- rewrite {2}/op_kleene set_mulDl.
apply: set_join_le_ub => _ [_ [i _ <-] <-].
rewrite {1}/op_kleene set_mulDr.
apply: set_join_le_ub => _ [_ [j _ <-] <-].
elim: i => [ | i HIi].
+ rewrite exp0 mulr1.
elim: j => [ | j HIj]; [by rewrite exp0 kleeneSr led_addr|].
rewrite expS kleeneSr plusSr -(add0r (_ * _)).
apply: led_add; [exact: le0d|].
apply: led_mul => [ | //].
exact: led_addr.
+ rewrite expS (mulrC b) mulrA.
apply: (le_trans (led_mul2r _ HIi)).
rewrite mulrC {2}kleeneSr plusSr -(add0r (_ * _)).
apply: led_add; [exact: le0d|].
exact/led_mul2r/led_addl.
Qed.
End ComResiduationTheory.
End ComCompleteDioidTheory.
#[short(type="subDioidCompleteLatticeType")]
HB.structure Definition SubDioidCompleteLattice d
(D : dioidCompleteLatticeType d) S d' :=
{ U of @SubDioid d D S d' U & CompleteLattice d' U }.
#[short(type="joinSubCompleteDioidType")]
HB.structure Definition JoinSubCompleteDioid d (D : completeDioidType d) S d' :=
{ U of @SubDioid d D S d' U & @JoinSubCompleteLattice d D S d' U
& CompleteDioid d' U }.
#[short(type="subCompleteDioidType")]
HB.structure Definition SubCompleteDioid d (D : completeDioidType d) S d' :=
{ U of @SubDioid d D S d' U & @SubCompleteLattice d D S d' U
& CompleteDioid d' U }.
HB.factory Record SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid
d (D : completeDioidType d) S d' U
of @SubDioid d D S d' U & @JoinSubCompleteLattice d D S d' U := {}.
HB.builders Context d D S d' U
of SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid d D S d' U.
Lemma set_mulDl (a : U) (B : set U) :
a * set_join B = set_join [set a * x | x in B].
Proof.
apply/val_inj; rewrite rmorphM/= !omorphSJ/= set_mulDl !image_comp.
by congr set_join; apply/eq_imagel => x Bx; rewrite /= rmorphM.
Qed.
Lemma set_mulDr (a : U) (B : set U) :
set_join B * a = set_join [set x * a | x in B].
Proof.
apply/val_inj; rewrite rmorphM/= !omorphSJ/= set_mulDr !image_comp.
by congr set_join; apply/eq_imagel => x Bx; rewrite /= rmorphM.
Qed.
HB.instance Definition _ := isCompleteDioid.Build d' U set_mulDl set_mulDr.
HB.end.
HB.factory Record SubDioid_SubPOrder_isJoinSubCompleteDioid d
(D : completeDioidType d) S d' U
of @SubDioid d D S d' U & @Order.SubPOrder d D S d' U := {
opredSJ_subproof : set_join_closed S;
}.
HB.builders Context d D S d' U
of SubDioid_SubPOrder_isJoinSubCompleteDioid d D S d' U.
HB.instance Definition _ := SubPOrder_isJoinSubCompleteLattice.Build d D S d' U
opredSJ_subproof.
HB.instance Definition _ :=
SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid.Build d D S d' U.
HB.end.
HB.factory Record SubChoice_isJoinSubCompleteDioid d (D : completeDioidType d)
S (d' : unit) U of SubChoice D S U := {
semiring_closed_subproof : semiring_closed S;
opredSJ_subproof : set_join_closed S;
}.
HB.builders Context d D S d' U of SubChoice_isJoinSubCompleteDioid d D S d' U.
HB.instance Definition _ := SubChoice_isSubDioid.Build d D S d' U
semiring_closed_subproof.
HB.instance Definition _ :=
SubDioid_SubPOrder_isJoinSubCompleteDioid.Build d D S d' U opredSJ_subproof.
HB.end.
HB.factory Record SubChoice_isJoinSubComCompleteDioid
d (D : comCompleteDioidType d) S (d' : unit) U of SubChoice D S U := {
semiring_closed_subproof : semiring_closed S;
opredSJ_subproof : set_join_closed S;
}.
HB.builders Context d D S d' U
of SubChoice_isJoinSubComCompleteDioid d D S d' U.
HB.instance Definition _ := SubChoice_isJoinSubCompleteDioid.Build d D S d' U
semiring_closed_subproof opredSJ_subproof.
HB.instance Definition _ := GRing.SubSemiRing_isSubComSemiRing.Build D S U.
HB.end.
HB.factory Record SubDioid_SubCompleteLattice_isSubCompleteDioid
d (D : completeDioidType d) S d' U
of @SubDioid d D S d' U & @SubCompleteLattice d D S d' U := {}.
HB.builders Context d D S d' U
of SubDioid_SubCompleteLattice_isSubCompleteDioid d D S d' U.
Lemma set_mulDl (a : U) (B : set U) :
a * set_join B = set_join [set a * x | x in B].
Proof.
apply/val_inj; rewrite rmorphM/= !omorphSJ/= set_mulDl !image_comp.
by congr set_join; apply/eq_imagel => x Bx; rewrite /= rmorphM.
Qed.
Lemma set_mulDr (a : U) (B : set U) :
set_join B * a = set_join [set x * a | x in B].
Proof.
apply/val_inj; rewrite rmorphM/= !omorphSJ/= set_mulDr !image_comp.
by congr set_join; apply/eq_imagel => x Bx; rewrite /= rmorphM.
Qed.
HB.instance Definition _ := isCompleteDioid.Build d' U set_mulDl set_mulDr.
HB.end.
HB.factory Record SubDioid_SubPOrder_isSubCompleteDioid d
(D : completeDioidType d) S d' U
of @SubDioid d D S d' U & @Order.SubPOrder d D S d' U := {
opredSM_subproof : set_meet_closed S;
opredSJ_subproof : set_join_closed S;
}.
HB.builders Context d D S d' U
of SubDioid_SubPOrder_isSubCompleteDioid d D S d' U.
HB.instance Definition _ := SubPOrder_isSubCompleteLattice.Build d D S d' U
opredSM_subproof opredSJ_subproof.
HB.instance Definition _ :=
SubDioid_SubCompleteLattice_isSubCompleteDioid.Build d D S d' U.
HB.end.
HB.factory Record SubChoice_isSubCompleteDioid d (D : completeDioidType d) S
(d' : unit) U of SubChoice D S U := {
semiring_closed_subproof : semiring_closed S;
opredSM_subproof : set_meet_closed S;
opredSJ_subproof : set_join_closed S;
}.
HB.builders Context d D S d' U of SubChoice_isSubCompleteDioid d D S d' U.
HB.instance Definition _ := SubChoice_isSubDioid.Build d D S d' U
semiring_closed_subproof.
HB.instance Definition _ :=
SubDioid_SubPOrder_isSubCompleteDioid.Build d D S d' U
opredSM_subproof opredSJ_subproof.
HB.end.
HB.factory Record SubChoice_isSubComCompleteDioid
d (D : comCompleteDioidType d) S (d' : unit) U of SubChoice D S U := {
semiring_closed_subproof : semiring_closed S;
opredSM_subproof : set_meet_closed S;
opredSJ_subproof : set_join_closed S;
}.
HB.builders Context d D S d' U
of SubChoice_isSubComCompleteDioid d D S d' U.
HB.instance Definition _ := SubChoice_isSubCompleteDioid.Build d D S d' U
semiring_closed_subproof opredSM_subproof opredSJ_subproof.
HB.instance Definition _ := GRing.SubSemiRing_isSubComSemiRing.Build D S U.
HB.end.
Notation "[ 'SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid' 'of' U 'by' <: ]" :=
(SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid.Build _ _ _ _ U)
(at level 0, format "[ 'SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid.Build _ _ _ disp U)
(at level 0, format "[ 'SubDioid_JoinSubCompleteLattice_isJoinSubCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubDioid_SubPOrder_isJoinSubCompleteDioid' 'of' U 'by' <: ]" :=
(SubDioid_SubPOrder_isJoinSubCompleteDioid.Build _ _ _ _ U (opredSJ _))
(at level 0, format "[ 'SubDioid_SubPOrder_isJoinSubCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubDioid_SubPOrder_isJoinSubCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubDioid_SubPOrder_isJoinSubCompleteDioid.Build _ _ _ disp U (opredSJ _))
(at level 0, format "[ 'SubDioid_SubPOrder_isJoinSubCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubChoice_isJoinSubCompleteDioid' 'of' U 'by' <: ]" :=
(SubChoice_isJoinSubCompleteDioid.Build _ _ _ _ U (semiringClosedP _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isJoinSubCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubChoice_isJoinSubCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubChoice_isJoinSubCompleteDioid.Build _ _ _ disp U (semiringClosedP _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isJoinSubCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubChoice_isJoinSubComCompleteDioid' 'of' U 'by' <: ]" :=
(SubChoice_isJoinSubComCompleteDioid.Build _ _ _ _ U (semiringClosedP _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isJoinSubComCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubChoice_isJoinSubComCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubChoice_isJoinSubComCompleteDioid.Build _ _ _ disp U (semiringClosedP _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isJoinSubComCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubDioid_SubCompleteLattice_isSubCompleteDioid' 'of' U 'by' <: ]" :=
(SubDioid_SubCompleteLattice_isSubCompleteDioid.Build _ _ _ _ U)
(at level 0, format "[ 'SubDioid_SubCompleteLattice_isSubCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubDioid_SubCompleteLattice_isSubCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubDioid_SubCompleteLattice_isSubCompleteDioid.Build _ _ _ disp U)
(at level 0, format "[ 'SubDioid_SubCompleteLattice_isSubCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubDioid_SubPOrder_isSubCompleteDioid' 'of' U 'by' <: ]" :=
(SubDioid_SubPOrder_isSubCompleteDioid.Build _ _ _ _ U (opredSM _) (opredSJ _))
(at level 0, format "[ 'SubDioid_SubPOrder_isSubCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubDioid_SubPOrder_isSubCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubDioid_SubPOrder_isSubCompleteDioid.Build _ _ _ disp U (opredSM _) (opredSJ _))
(at level 0, format "[ 'SubDioid_SubPOrder_isSubCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubChoice_isSubCompleteDioid' 'of' U 'by' <: ]" :=
(SubChoice_isSubCompleteDioid.Build _ _ _ _ U (semiringClosedP _) (opredSM _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isSubCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubChoice_isSubCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubChoice_isSubCompleteDioid.Build _ _ _ disp U (semiringClosedP _) (opredSM _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isSubCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
Notation "[ 'SubChoice_isSubComCompleteDioid' 'of' U 'by' <: ]" :=
(SubChoice_isSubComCompleteDioid.Build _ _ _ _ U (semiringClosedP _) (opredSM _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isSubComCompleteDioid' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubChoice_isSubComCompleteDioid' 'of' U 'by' <: 'with' disp ]" :=
(SubChoice_isSubComCompleteDioid.Build _ _ _ disp U (semiringClosedP _) (opredSM _) (opredSJ _))
(at level 0, format "[ 'SubChoice_isSubComCompleteDioid' 'of' U 'by' <: 'with' disp ]")
: form_scope.
(* begin hide *)
(* Testing subtype hierarchy
Section Test0.
Variables (d : unit) (T : choiceType) (S : {pred T}).
Inductive B := mkB x & x \in S.
Definition vB u := let: mkB x _ := u in x.
HB.instance Definition _ := [isSub for vB].
HB.instance Definition _ := [Choice of B by <:].
End Test0.
Module Test1.
Section Test1.
Variables (d : unit) (D : completeDioidType d) (S : semiringClosed D).
Hypothesis SSJ : set_join_closed S.
HB.instance Definition _ := isJoinCompleteLatticeClosed.Build d D S SSJ.
HB.instance Definition _ :=
[SubChoice_isJoinSubCompleteDioid of B S by <: with tt].
End Test1.
End Test1.
Module Test2.
Section Test2.
Variables (d : unit) (D : completeDioidType d) (S : semiringClosed D).
Hypothesis SSM : set_meet_closed S.
Hypothesis SSJ : set_join_closed S.
HB.instance Definition _ := isCompleteLatticeClosed.Build d D S SSM SSJ.
HB.instance Definition _ := [SubChoice_isSubCompleteDioid of B S by <: with tt].
End Test2.
End Test2.
Module Test3.
Section Test3.
Variables (d : unit) (D : comCompleteDioidType d) (S : semiringClosed D).
Hypothesis SSJ : set_join_closed S.
HB.instance Definition _ := isJoinCompleteLatticeClosed.Build d D S SSJ.
HB.instance Definition _ :=
[SubChoice_isJoinSubComCompleteDioid of B S by <: with tt].
End Test3.
End Test3.
*)
(* end hide *)