-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_ocred.py
188 lines (154 loc) · 6.42 KB
/
process_ocred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import json
from pathlib import Path
import random
import torch
from datasets import load_dataset
#from transform_tokenize import transform_and_tokenize
from transformers import DonutProcessor
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig
from huggingface_hub import HfFolder
from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer
new_special_tokens = [] # New tokens to add to the tokenizer
task_start_token ="<s>"
eos_token = "</s>"
# Define paths
base_path = Path("..\data")
metadata_path = base_path.joinpath("key")
image_path = base_path.joinpath("img")
# Load dataset
dataset = load_dataset("imagefolder", data_dir=image_path, split="train")
print(f"Dataset has {len(dataset)} images")
print(f"Dataset features are: {dataset.features.keys()}")
random_sample = random.randint(0, len(dataset))
print(f"Random sample is {random_sample}")
print(f"OCR text is {dataset[random_sample]['text']}")
dataset[random_sample]['image'].resize((250,400))
# Sample should be similar to: OCR text is {"company": "LIM SENG THO HARDWARE TRADING", "date": "29/12/2017", "address": "NO 7, SIMPANG OFF BATU VILLAGE, JALAN IPOH BATU 5, 51200 KUALA LUMPUR MALAYSIA", "total": "6.00"}
def json2token(obj, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
"""
Convert an ordered JSON object into a token sequence
"""
if type(obj) == dict:
if len(obj) == 1 and "text_sequence" in obj:
return obj["text_sequence"]
else:
output = ""
if sort_json_key:
keys = sorted(obj.keys(), reverse=True)
else:
keys = obj.keys()
for k in keys:
if update_special_tokens_for_json_key:
new_special_tokens.append(fr"<s_{k}>") if fr"<s_{k}>" not in new_special_tokens else None
new_special_tokens.append(fr"</s_{k}>") if fr"</s_{k}>" not in new_special_tokens else None
output += (
fr"<s_{k}>"
+ json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
+ fr"</s_{k}>"
)
return output
elif type(obj) == list:
return r"<sep/>".join(
[json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
)
else:
# excluded special tokens for now
obj = str(obj)
if f"<{obj}/>" in new_special_tokens:
obj = f"<{obj}/>" # for categorical special tokens
return obj
def preprocess_documents_for_donut(sample):
# create Donut-style input
text = json.loads(sample["text"])
d_doc = task_start_token + json2token(text) + eos_token
# convert all images to RGB
image = sample["image"].convert('RGB')
return {"image": image, "text": d_doc}
proc_dataset = dataset.map(preprocess_documents_for_donut)
print(f"Sample: {proc_dataset[45]['text']}")
print(f"New special tokens: {new_special_tokens + [task_start_token] + [eos_token]}")
#------------------------------------------------------------------------------#
# Load processor
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base")
# add new special tokens to tokenizer
processor.tokenizer.add_special_tokens({"additional_special_tokens": new_special_tokens + [task_start_token] + [eos_token]})
processor.feature_extractor.size = [720, 960] # should be (width, height), try 720, 960 if fails
processor.feature_extractor.do_align_long_axis = False
def transform_and_tokenize(sample, processor=processor, split="train", max_length=512, ignore_id=-100):
# create tensor from image
try:
pixel_values = processor(
sample["image"], random_padding=split == "train", return_tensors="pt"
).pixel_values.squeeze()
except Exception as e:
print(sample)
print(f"Error: {e}")
return {}
# tokenize document
input_ids = processor.tokenizer(
sample["text"],
add_special_tokens=False,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)["input_ids"].squeeze(0)
labels = input_ids.clone()
labels[labels == processor.tokenizer.pad_token_id] = ignore_id # model doesn't need to predict pad token
return {"pixel_values": pixel_values, "labels": labels, "target_sequence": sample["text"]}
# need at least 32-64GB of RAM to run this
processed_dataset = proc_dataset.map(transform_and_tokenize,remove_columns=["image","text"])
processed_dataset.save_to_disk("processed_dataset")
processor.save_pretrained("processor")
processed_dataset = processed_dataset.train_test_split(test_size=0.1)
print(processed_dataset)
#----------------------------------------------------------#
# Load model from huggingface.co
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base")
# Resize embedding layer to match vocabulary size
new_emb = model.decoder.resize_token_embeddings(len(processor.tokenizer))
print(f"New embedding size: {new_emb}")
# Adjust our image size and output sequence lengths
model.config.encoder.image_size = processor.feature_extractor.size[::-1] # (height, width)
model.config.decoder.max_length = len(max(processed_dataset["train"]["labels"], key=len))
# Add task token for decoder to start
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.decoder_start_token_id = processor.tokenizer.convert_tokens_to_ids(['<s>'])[0]
# is done by Trainer
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print(device)
# hyperparameters used for multiple args
hf_repository_id = "donut-base-sroie"
# Arguments for training
training_args = Seq2SeqTrainingArguments(
output_dir=hf_repository_id,
num_train_epochs=3,
learning_rate=2e-5,
per_device_train_batch_size=2,
weight_decay=0.01,
fp16=True,
logging_steps=100,
save_total_limit=2,
evaluation_strategy="no",
save_strategy="epoch",
predict_with_generate=True,
# push to hub parameters
report_to="tensorboard",
push_to_hub=True,
hub_strategy="every_save",
hub_model_id=hf_repository_id,
hub_token=HfFolder.get_token(),
)
# Create Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=processed_dataset["train"],
)
trainer.train()
# Save processor and create model card
processor.save_pretrained(hf_repository_id)
trainer.create_model_card()
trainer.push_to_hub()