-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexercise01.tex
168 lines (146 loc) · 4.39 KB
/
exercise01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
\documentclass[11pt]{article}
% % \def\hidesolutions{}
\input{header}
\begin{document}
\exsheet{1}{12}{September} % parameters are the number of the session and the day
\begin{exercise}
Compute the norms (that is, lengths), the $3$ scalar products and $6$ vector products of the following vectors.
Find the volume of the parallelepiped spanned by these vectors.
\[
\vec{a} = \left(\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right)
,
\vec{b} = \left(\begin{array}{c} 2 \\ -1 \\ 0 \end{array}\right)
,
\vec{c} = \left(\begin{array}{c} 1 \\ 1 \\ 3 \end{array}\right)
\]
\end{exercise}
\begin{solution}
\begin{gather*}
\vec{a} = \sqrt{6}, \quad \vec{b} = \sqrt{5}, \quad \vec{c} = \sqrt{11}
\\
\vec{a} \cdot \vec{b} = 0,
\quad
\vec{a} \cdot \vec{c} = 0,
\quad
\vec{b} \cdot \vec{c} = 1,
\\
\vec{a} \times \vec{b} = - \vec{b} \times \vec{a} = \left(\begin{array}{c} -1 \\ -2 \\ -5 \end{array}\right),
\quad
\vec{a} \times \vec{c} = - \vec{c} \times \vec{a} = \left(\begin{array}{c} 7 \\ -4 \\ -1 \end{array}\right),
\quad
\vec{b} \times \vec{c} = - \vec{c} \times \vec{b} = \left(\begin{array}{c} -3 \\ -6 \\ 3 \end{array}\right),
\end{gather*}
The volume of the parallelepiped spanned by the three vectors is $18$.
\end{solution}
\begin{exercise}
Consider the function
\[
f(x,y) = \sin\left( 2\pi x^2 + 2\pi y^2 \right)
\]
Find the first derivatives in $x$ and $y$.
Sketch the level sets of $f$ for the values $0$ and $1$.
\end{exercise}
\begin{solution}
We easily compute
\[
\partial_x f(x,y) = \cos\left( 2\pi x^2 + 2\pi y^2 \right) \cdot 4\pi \cdot x,
\quad
\partial_y f(x,y) = \cos\left( 2\pi x^2 + 2\pi y^2 \right) \cdot 4\pi \cdot y.
\]
The level sets are concentric circles centered at zero. One approach to understanding works as follows.
First, we rewrite
\[
f(x,y) = \sin\left( 2\pi ( x^2 + y^2 ) \right)
\]
We remember
that
\[
\sin( 2\pi t ) = 0 \text{ for the positive values } t = 0, \frac 1 2, 1, \frac 3 2, \dots
\]
and
that
\[
\sin( 2\pi t ) = 1 \text{ for the positive values } t = \frac 1 4, \frac 5 4, \frac 9 4, \dots.
\]
Hence, whenever $x^2 + y^2$ hits one these values listed above, then we are on the level of $0$ or $1$.
Specifically, $f(x,y) = 0$ if $(x,y)$ lies on a circle centered at zero and with radius
\[
0, \sqrt{\frac 1 2}, \sqrt{1}, \sqrt{\frac 3 2}, \sqrt{2}, \dots,
\]
Similarly, $f(x,y) = 1$ if $(x,y)$ lies on a circle centered at zero and with radius
\[
0, \sqrt{\frac 1 4}, \sqrt{\frac 5 4}, \sqrt{\frac 9 2}, \sqrt{\frac {13} 4}, \dots.
\]
\end{solution}
\begin{exercise}
Sketch the following vector field:
\[
f(x,y) = \left(\begin{array}{c} \sin(x) \\ sin(y) \end{array}\right)
\]
\end{exercise}
\begin{solution}
Please do this in the exercise session.
\end{solution}
\begin{exercise}
Compute the following integrals:
\[
\int_0^1 \int_0^1 x^2 e^y \; dx dy,
\quad
\int_0^1 x^2 \cos(x) \; dx.
\]
\end{exercise}
\begin{solution}
For the first integral, we can either split up the integral into two factors, or we compute one after the other.
We find
\[
\int_0^1 \int_0^1 x^2 e^y \; dx dy
=
\int_0^1 x^2 \; dx
\cdot
\int_0^1 e^y \; dy
=
\frac 1 3 \cdot ( e - 1).
\]
For the second integral, we use integration by parts.
\begin{align*}
\int_0^1 x^2 \cos(x) \; dx
&=
x^2 \sin(x) |_0^1
-
\int_0^1 2x \sin(x) \; dx
\\&=
x^2 \sin(x) |_0^1
-
\left( 2x (-\cos(x)) |_0^1 - \int_0^1 2 (-\cos(x)) \; dx \right)
\\&=
x^2 \sin(x) |_0^1
-
2x (-\cos(x)) |_0^1
+
\int_0^1 2 (-\cos(x)) \; dx
\\&=
x^2 \sin(x) |_0^1
-
2x (-\cos(x)) |_0^1
-
2 \int_0^1 \cos(x) \; dx
\\&=
x^2 \sin(x) |_0^1
-
2x (-\cos(x)) |_0^1
-
2 \left( \sin(1) - \sin(0) \right)
\\&=
\sin(1)
-
2 (-\cos(1))
-
2 \sin(1)
\\&=
2 \cos(1)
-
\sin(1)
.
\end{align*}
\end{solution}
\end{document}