-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
734 lines (620 loc) · 30.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
# pylint: disable=C, R, bare-except, arguments-differ, no-member, undefined-loop-variable, not-callable, unbalanced-tuple-unpacking, abstract-method
import argparse
import copy
import math
import os
import pickle
import subprocess
from functools import partial
from time import perf_counter
import torch
from gradientflow import gradientflow_backprop, gradientflow_kernel, gradientflow_backprop_sgd
from arch import init_arch
from dataset import get_binary_dataset
from kernels import compute_kernels, eigenvectors, kernel_intdim
def loglinspace(step, tau, end=None):
t = 0
while end is None or t <= end:
yield t
t = int(t + 1 + step * (1 - math.exp(-t / tau)))
def loss_func(args, f, y):
if args['loss'] == 'hinge':
return (args['loss_margin'] - args['alpha'] * f * y).relu() / args['alpha']
if args['loss'] == 'softhinge':
sp = partial(torch.nn.functional.softplus, beta=args['loss_beta'])
return sp(args['loss_margin'] - args['alpha'] * f * y) / args['alpha']
if args['loss'] == 'qhinge':
return 0.5 * (args['loss_margin'] - args['alpha'] * f * y).relu().pow(2) / args['alpha']
def loss_func_prime(args, f, y):
if args['loss'] == 'hinge':
return -((args['loss_margin'] - args['alpha'] * f * y) > 0).double() * y
if args['loss'] == 'softhinge':
return -torch.sigmoid(args['loss_beta'] * (args['loss_margin'] - args['alpha'] * f * y)) * y
if args['loss'] == 'qhinge':
return -(args['loss_margin'] - args['alpha'] * f * y).relu() * y
def run_kernel(prefix, args, ktrtr, ktetr, ktete, xtr, ytr, xte, yte):
assert args['f0'] == 1
assert ktrtr.shape == (len(xtr), len(xtr))
assert ktetr.shape == (len(xte), len(xtr))
assert ktete.shape == (len(xte), len(xte))
assert len(yte) == len(xte)
assert len(ytr) == len(xtr)
tau = args['tau_over_h_kernel'] * args['h']
if args['tau_alpha_crit'] is not None:
tau *= min(1, args['tau_alpha_crit'] / args['alpha'])
margin = 0
checkpoint_generator = loglinspace(args['ckpt_step'], args['ckpt_tau'])
checkpoint = next(checkpoint_generator)
wall = perf_counter()
dynamics = []
for state, internals in gradientflow_kernel(ktrtr, ytr, tau, partial(loss_func_prime, args), args['max_dgrad'], args['max_dout'] / args['alpha']):
save_outputs = args['save_outputs']
save = stop = False
otr = internals['output']
grad = internals['gradient']
if state['step'] == checkpoint:
checkpoint = next(checkpoint_generator)
save = True
if torch.isnan(otr).any():
save = stop = True
if wall + args['max_wall_kernel'] < perf_counter():
save = save_outputs = stop = True
mind = (args['alpha'] * otr * ytr).min().item()
if mind > margin:
margin += 0.5
save = save_outputs = True
if mind > args['stop_margin']:
save = save_outputs = stop = True
if args['train_kernel'] == 0:
save = save_outputs = stop = True
if not save:
continue
state['grad_norm'] = grad.norm().item()
state['wall'] = perf_counter() - wall
state['train'] = {
'loss': loss_func(args, otr, ytr).mean().item(),
'aloss': args['alpha'] * loss_func(args, otr, ytr).mean().item(),
'err': (otr * ytr <= 0).double().mean().item(),
'nd': (args['alpha'] * otr * ytr < args['stop_margin']).long().sum().item(),
'mind': (args['alpha'] * otr * ytr).min().item(),
'maxd': (args['alpha'] * otr * ytr).max().item(),
'dfnorm': otr.pow(2).mean().sqrt().item(),
'alpha_norm': internals['parameters'].norm().item(),
'outputs': otr.detach().cpu().clone() if save_outputs else None,
'labels': ytr.cpu() if save_outputs else None,
}
# if len(xte) > len(xtr):
# from hessian import gradient
# a = gradient(f(xtr) @ alpha, f.parameters())
# ote = torch.stack([gradient(f(x[None]), f.parameters()) @ a for x in xte])
# else:
ote = ktetr @ internals['parameters']
state['test'] = {
'loss': loss_func(args, ote, yte).mean().item(),
'aloss': args['alpha'] * loss_func(args, ote, yte).mean().item(),
'err': (ote * yte <= 0).double().mean().item(),
'nd': (args['alpha'] * ote * yte < args['stop_margin']).long().sum().item(),
'mind': (args['alpha'] * ote * yte).min().item(),
'maxd': (args['alpha'] * ote * yte).max().item(),
'dfnorm': ote.pow(2).mean().sqrt().item(),
'outputs': ote.detach().cpu().clone() if save_outputs else None,
'labels': yte.cpu() if save_outputs else None,
}
print(("[{prefix}] [i={d[step]:d} t={d[t]:.2e} wall={d[wall]:.0f}] [dt={d[dt]:.1e} dgrad={d[dgrad]:.1e} dout={d[dout]:.1e}]" + \
" [train aL={d[train][aloss]:.2e} err={d[train][err]:.2f} nd={d[train][nd]}/{ptr} mind={d[train][mind]:.3f}]" + \
" [test aL={d[test][aloss]:.2e} err={d[test][err]:.2f}]").format(prefix=prefix, d=state, ptr=len(xtr), pte=len(xte)), flush=True)
dynamics.append(state)
out = {
'dynamics': dynamics,
'kernel': None,
}
if stop:
out['kernel'] = {
'train': {
'value': ktrtr.detach().cpu().clone() if args['store_kernel'] == 1 else None,
'diag': ktrtr.diag().detach().cpu().clone(),
'mean': ktrtr.mean().item(),
'std': ktrtr.std().item(),
'norm': ktrtr.norm().item(),
'intdim': kernel_intdim(ktrtr),
'eigenvectors': eigenvectors(ktrtr, ytr),
},
'test': {
'value': ktete.detach().cpu().clone() if args['store_kernel'] == 1 else None,
'diag': ktete.diag().detach().cpu().clone(),
'mean': ktete.mean().item(),
'std': ktete.std().item(),
'norm': ktete.norm().item(),
'intdim': kernel_intdim(ktete),
'eigenvectors': eigenvectors(ktete, yte),
},
}
yield out
if stop:
break
def run_regular(args, f_init, xtr, ytr, xte, yte):
with torch.no_grad():
ote0 = f_init(xte)
otr0 = f_init(xtr)
if args['f0'] == 0:
ote0 = torch.zeros_like(ote0)
otr0 = torch.zeros_like(otr0)
tau = args['tau_over_h'] * args['h']
if args['tau_alpha_crit'] is not None:
tau *= min(1, args['tau_alpha_crit'] / args['alpha'])
best_test_error = 1
wall_best_test_error = perf_counter()
tmp_outputs_index = -1
margin = 0
n_changed_dt = 0
checkpoint_generator = loglinspace(args['ckpt_step'], args['ckpt_tau'])
checkpoint = next(checkpoint_generator)
if args['temperature'] == 0.0:
gradientflow = partial(
gradientflow_backprop,
loss=partial(loss_func, args),
subf0=bool(args['f0']),
tau=tau,
chunk=args['chunk'],
batch=args['bs'],
max_dgrad=args['max_dgrad'],
max_dout=args['max_dout'] / args['alpha']
)
else:
gradientflow = partial(
gradientflow_backprop_sgd,
loss_function=partial(loss_func, args),
subf0=bool(args['f0']),
beta=1.0 / args['temperature'],
chunk=args['chunk'],
batch_min=args['batch_min'],
batch_max=args['batch_max'],
max_dgrad=args['max_dgrad'],
max_dout=args['max_dout'] / args['alpha'],
dt_amplification=args['dt_amp'],
dt_damping=args['dt_dam'],
)
wall = perf_counter()
dynamics = []
for state, internals in gradientflow(f_init, xtr, ytr):
save_outputs = args['save_outputs']
save = stop = False
otr = internals['output']
f = internals['f']
n_changed_dt += internals['changed_dt']
if state['step'] == checkpoint:
checkpoint = next(checkpoint_generator)
save = True
if torch.isnan(otr).any():
save = stop = True
if wall + args['max_wall'] < perf_counter():
save = save_outputs = stop = True
if args['wall_max_early_stopping'] is not None and wall_best_test_error + args['wall_max_early_stopping'] < perf_counter():
save = save_outputs = stop = True
if len(otr) == len(xtr):
mind = (args['alpha'] * otr * ytr).min().item()
if mind > margin:
margin += 0.5
save = save_outputs = True
if mind > args['stop_margin']:
save = save_outputs = stop = True
if (args['ptr'] - (args['alpha'] * otr * ytr < args['stop_margin']).long().sum().item()) / args['ptr'] > args['stop_frac']:
save = save_outputs = stop = True
if not save:
continue
state['grad_norm'] = internals['gradient'].norm().item()
state['wall'] = perf_counter() - wall
state['norm'] = sum(p.norm().pow(2) for p in f.parameters()).sqrt().item()
state['dnorm'] = sum((p0 - p).norm().pow(2) for p0, p in zip(f_init.parameters(), f.parameters())).sqrt().item()
if len(otr) == len(xtr) and state['grad_norm'] == 0:
save = save_outputs = stop = True
if len(otr) < len(xtr):
with torch.no_grad():
otr = f(xtr) - otr0
mind = (args['alpha'] * otr * ytr).min().item()
if mind > margin:
margin += 0.5
save = save_outputs = True
if mind > args['stop_margin']:
save = save_outputs = stop = True
with torch.no_grad():
ote = f(xte) - ote0
test_err = (ote * yte <= 0).double().mean().item()
if test_err < best_test_error:
if tmp_outputs_index != -1:
dynamics[tmp_outputs_index]['train']['outputs'] = None
dynamics[tmp_outputs_index]['train']['labels'] = None
dynamics[tmp_outputs_index]['test']['outputs'] = None
dynamics[tmp_outputs_index]['test']['labels'] = None
best_test_error = test_err
wall_best_test_error = perf_counter()
if not save_outputs:
tmp_outputs_index = len(dynamics)
save_outputs = True
if args['arch'] == 'fc':
def getw(f, i):
return torch.cat(list(getattr(f.f, "W{}".format(i))))
state['wnorm'] = [getw(f, i).norm().item() for i in range(f.f.L + 1)]
state['dwnorm'] = [(getw(f, i) - getw(f_init, i)).norm().item() for i in range(f.f.L + 1)]
if args['save_weights']:
assert args['L'] == 1
W = [getw(f, i) for i in range(2)]
W0 = [getw(f_init, i) for i in range(2)]
state['w'] = [W[0][:, j].pow(2).mean().sqrt().item() for j in range(args['d'])]
state['dw'] = [(W[0][:, j] - W0[0][:, j]).pow(2).mean().sqrt().item() for j in range(args['d'])]
state['beta'] = W[1].pow(2).mean().sqrt().item()
state['dbeta'] = (W[1] - W0[1]).pow(2).mean().sqrt().item()
if args['bias']:
B = getattr(f.f, "B0")
B0 = getattr(f_init.f, "B0")
state['b'] = B.pow(2).mean().sqrt().item()
state['db'] = (B - B0).pow(2).mean().sqrt().item()
state['state'] = copy.deepcopy(f.state_dict()) if save_outputs and (args['save_state'] == 1) else None
state['train'] = {
'loss': loss_func(args, otr, ytr).mean().item(),
'aloss': args['alpha'] * loss_func(args, otr, ytr).mean().item(),
'err': (otr * ytr <= 0).double().mean().item(),
'nd': (args['alpha'] * otr * ytr < args['stop_margin']).long().sum().item(),
'mind': (args['alpha'] * otr * ytr).min().item(),
'maxd': (args['alpha'] * otr * ytr).max().item(),
'mediand': (args['alpha'] * otr * ytr).median().item(),
'dfnorm': otr.pow(2).mean().sqrt().item(),
'fnorm': (otr + otr0).pow(2).mean().sqrt().item(),
'outputs': otr.cpu().clone() if save_outputs else None,
'labels': ytr.cpu().clone() if save_outputs else None,
}
state['test'] = {
'loss': loss_func(args, ote, yte).mean().item(),
'aloss': args['alpha'] * loss_func(args, ote, yte).mean().item(),
'err': test_err,
'nd': (args['alpha'] * ote * yte < args['stop_margin']).long().sum().item(),
'mind': (args['alpha'] * ote * yte).min().item(),
'maxd': (args['alpha'] * ote * yte).max().item(),
'mediand': (args['alpha'] * ote * yte).median().item(),
'dfnorm': ote.pow(2).mean().sqrt().item(),
'fnorm': (ote + ote0).pow(2).mean().sqrt().item(),
'outputs': ote.cpu().clone() if save_outputs else None,
'labels': yte.cpu().clone() if save_outputs else None,
}
print(
(
"[i={d[step]:d} t={d[t]:.2e} wall={d[wall]:.0f}] " + \
"[{ndt}dt={d[dt]:.1e} dg={d[dgrad]:.1e} do={d[dout]:.1e}] " + \
"[train aL={d[train][aloss]:.2e} err={d[train][err]:.2f} " + \
"nd={d[train][nd]}/{p} mind={d[train][mind]:.3f}] " + \
"[test aL={d[test][aloss]:.2e} err={d[test][err]:.2f}]"
).format(d=state, p=len(ytr), ndt=("+{} ".format(n_changed_dt) if n_changed_dt else "")),
flush=True
)
n_changed_dt = 0
dynamics.append(state)
out = {
'dynamics': dynamics,
}
if (args['ptr'] - state["train"]["nd"]) / args['ptr'] > args['stop_frac']:
stop = True
yield f, out
if stop:
break
def run_exp(args, f0, xtr, ytr, xtk, ytk, xte, yte):
run = {
'args': args,
'N': sum(p.numel() for p in f0.parameters()),
'finished': False,
}
wall = None
if args['init_features_ptr'] == 1:
parameters = [p for n, p in f0.named_parameters() if 'W{}'.format(args['L']) in n or 'classifier' in n]
assert parameters
kernels = compute_kernels(f0, xtr, xte[:len(xtk)], parameters)
for out in run_kernel('init_features_ptr', args, *kernels, xtr, ytr, xte[:len(xtk)], yte[:len(xtk)]):
run['init_features_ptr'] = out
if wall is None or perf_counter() - wall > 120:
wall = perf_counter()
yield run
del kernels
if args['init_kernel'] == 1:
init_kernel = compute_kernels(f0, xtk, xte[:len(xtk)])
for out in run_kernel('init_kernel', args, *init_kernel, xtk, ytk, xte[:len(xtk)], yte[:len(xtk)]):
run['init_kernel'] = out
if args['init_kernel_ptr'] == 1:
init_kernel_ptr = compute_kernels(f0, xtr, xte[:len(xtk)])
for out in run_kernel('init_kernel_ptr', args, *init_kernel_ptr, xtr, ytr, xte[:len(xtk)], yte[:len(xtk)]):
run['init_kernel_ptr'] = out
del init_kernel_ptr
if args['delta_kernel'] == 1 and args['init_kernel'] == 1:
init_kernel = init_kernel[0].cpu()
elif args['delta_kernel'] == 1:
init_kernel, _, _ = compute_kernels(f0, xtk, xte[:1])
init_kernel = init_kernel.cpu()
elif args['init_kernel'] == 1:
del init_kernel
if args['regular'] == 1:
if args['running_kernel']:
it = iter(args['running_kernel'])
al = next(it)
else:
al = -1
for f, out in run_regular(args, f0, xtr, ytr, xte, yte):
run['regular'] = out
if out['dynamics'][-1]['train']['aloss'] < al * out['dynamics'][0]['train']['aloss']:
if args['init_kernel_ptr'] == 1:
assert len(xtk) >= len(xtr)
running_kernel = compute_kernels(f, xtk[:len(xtr)], xte[:len(xtk)])
for kout in run_kernel('kernel_ptr {}'.format(al), args, *running_kernel, xtk[:len(xtr)], ytk[:len(xtr)], xte[:len(xtk)], yte[:len(xtk)]):
out['dynamics'][-1]['kernel_ptr'] = kout
del running_kernel
if args['init_features_ptr'] == 1:
parameters = [p for n, p in f.named_parameters() if 'W{}'.format(args['L']) in n or 'classifier' in n]
assert parameters
assert len(xtk) >= len(xtr)
running_kernel = compute_kernels(f, xtk[:len(xtr)], xte[:len(xtk)], parameters)
for kout in run_kernel('features_ptr {}'.format(al), args, *running_kernel, xtk[:len(xtr)], ytk[:len(xtr)], xte[:len(xtk)], yte[:len(xtk)]):
out['dynamics'][-1]['features_ptr'] = kout
del running_kernel
out['dynamics'][-1]['state'] = copy.deepcopy(f.state_dict())
try:
al = next(it)
except StopIteration:
al = 0
if wall is None or perf_counter() - wall > 120:
wall = perf_counter()
yield run
yield run
if args['final_kernel'] == 1:
final_kernel = compute_kernels(f, xtk, xte[:len(xtk)])
if args['final_kernel_ptr'] == 1:
ktktk, ktetk, ktete = final_kernel
ktktk = ktktk[:len(xtr)][:, :len(xtr)]
ktetk = ktetk[:, :len(xtr)]
final_kernel_ptr = (ktktk, ktetk, ktete)
elif args['final_kernel_ptr'] == 1:
final_kernel_ptr = compute_kernels(f, xtk[:len(xtr)], xte[:len(xtk)])
if args['final_kernel'] == 1:
for out in run_kernel('final_kernel', args, *final_kernel, xtk, ytk, xte[:len(xtk)], yte[:len(xtk)]):
run['final_kernel'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
if args['delta_kernel'] == 0:
del final_kernel
if args['final_kernel_ptr'] == 1:
assert len(xtk) >= len(xtr)
for out in run_kernel('final_kernel_ptr', args, *final_kernel_ptr, xtk[:len(xtr)], ytk[:len(xtr)], xte[:len(xtk)], yte[:len(xtk)]):
run['final_kernel_ptr'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
del final_kernel_ptr
if args['delta_kernel'] == 1:
if args['final_kernel'] == 1:
final_kernel = final_kernel[0].cpu()
else:
final_kernel, _, _ = compute_kernels(f, xtk, xte[:1])
final_kernel = final_kernel.cpu()
run['delta_kernel'] = {
'traink': (init_kernel - final_kernel).norm().item(),
}
run['delta_kernel']['init'] = {
'traink': {
'value': init_kernel.detach().cpu() if args['store_kernel'] == 1 else None,
'diag': init_kernel.diag().detach().cpu().clone(),
'mean': init_kernel.mean().item(),
'std': init_kernel.std().item(),
'norm': init_kernel.norm().item(),
},
}
run['delta_kernel']['final'] = {
'traink': {
'value': final_kernel.detach().cpu() if args['store_kernel'] == 1 else None,
'diag': final_kernel.diag().detach().cpu().clone(),
'mean': final_kernel.mean().item(),
'std': final_kernel.std().item(),
'norm': final_kernel.norm().item(),
},
}
del init_kernel, final_kernel
if args['stretch_kernel'] == 1:
assert args['save_weights']
lam = [x["w"][0] / torch.tensor(x["w"][1:]).float().mean() for x in run['regular']["dynamics"]]
frac = [(args['ptr'] - x["train"]["nd"]) / args['ptr'] for x in run['regular']["dynamics"]]
for _lam, _frac in zip(lam, frac):
if _frac > 0.1:
lam_star = _lam
break
_xtr = xtr.clone()
_xte = xte.clone()
_xtr[:, 1:] = xtr[:, 1:] / lam_star
_xte[:, 1:] = xte[:, 1:] / lam_star
stretch_kernel = compute_kernels(f0, _xtr, _xte)
for out in run_kernel('stretch_kernel', args, *stretch_kernel, _xtr, ytr, _xte, yte):
run['stretch_kernel'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
del stretch_kernel
if args['final_features'] == 1:
parameters = [p for n, p in f.named_parameters() if 'W{}'.format(args['L']) in n or 'classifier' in n]
assert parameters
kernels = compute_kernels(f, xtk, xte[:len(xtk)], parameters)
for out in run_kernel('final_features', args, *kernels, xtk, ytk, xte[:len(xtk)], yte[:len(xtk)]):
run['final_features'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
del kernels
if args['final_features_ptr'] == 1:
parameters = [p for n, p in f.named_parameters() if 'W{}'.format(args['L']) in n or 'classifier' in n]
assert parameters
assert len(xtk) >= len(xtr)
kernels = compute_kernels(f, xtk[:len(xtr)], xte[:len(xtk)], parameters)
for out in run_kernel('final_features_ptr', args, *kernels, xtk[:len(xtr)], ytk[:len(xtr)], xte[:len(xtk)], yte[:len(xtk)]):
run['final_features_ptr'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
del kernels
if args['final_headless'] == 1:
parameters = [p for n, p in f.named_parameters() if not 'f.W0.' in n and not 'f.conv_stem.w' in n]
assert len(xtk) >= len(xtr)
kernels = compute_kernels(f, xtk, xte[:len(xtk)], parameters)
for out in run_kernel('final_headless', args, *kernels, xtk, ytk, xte[:len(xtk)], yte[:len(xtk)]):
run['final_headless'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
del kernels
if args['final_headless_ptr'] == 1:
parameters = [p for n, p in f.named_parameters() if not 'f.W0.' in n and not 'f.conv_stem.w' in n]
assert len(xtk) >= len(xtr)
kernels = compute_kernels(f, xtk[:len(xtr)], xte[:len(xtk)], parameters)
for out in run_kernel('final_headless_ptr', args, *kernels, xtk[:len(xtr)], ytk[:len(xtr)], xte[:len(xtk)], yte[:len(xtk)]):
run['final_headless_ptr'] = out
if perf_counter() - wall > 120:
wall = perf_counter()
yield run
del kernels
run['finished'] = True
yield run
def init(args):
torch.backends.cudnn.benchmark = True
if args['dtype'] == 'float64':
torch.set_default_dtype(torch.float64)
if args['dtype'] == 'float32':
torch.set_default_dtype(torch.float32)
[(xte, yte, ite), (xtk, ytk, itk), (xtr, ytr, itr)] = get_binary_dataset(
args['dataset'],
(args['pte'], args['ptk'], args['ptr']),
(args['seed_testset'] + args['pte'], args['seed_kernelset'] + args['ptk'], args['seed_trainset'] + args['ptr']),
args['d'],
(args['data_param1'], args['data_param2']),
args['device'],
torch.get_default_dtype()
)
f, (xtr, xtk, xte) = init_arch((xtr, xtk, xte), **args)
return f, xtr, ytr, itr, xtk, ytk, itk, xte, yte, ite
def execute(args):
f, xtr, ytr, itr, xtk, ytk, itk, xte, yte, ite = init(args)
torch.manual_seed(0)
for run in run_exp(args, f, xtr, ytr, xtk, ytk, xte, yte):
run['dataset'] = {
'test': ite.cpu().clone(),
'kernel': itk.cpu().clone(),
'train': itr.cpu().clone(),
}
yield run
def main():
git = {
'log': subprocess.getoutput('git log --format="%H" -n 1 -z'),
'status': subprocess.getoutput('git status -z'),
}
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--dtype", type=str, default='float64')
parser.add_argument("--seed_init", type=int, default=0)
parser.add_argument("--seed_testset", type=int, default=0, help="determines the testset, will affect the kernelset and trainset as well")
parser.add_argument("--seed_kernelset", type=int, default=0, help="determines the kernelset, will affect the trainset as well")
parser.add_argument("--seed_trainset", type=int, default=0, help="determines the trainset")
parser.add_argument("--dataset", type=str, required=True)
parser.add_argument("--ptr", type=int, required=True)
parser.add_argument("--ptk", type=int, default=0)
parser.add_argument("--pte", type=int)
parser.add_argument("--d", type=int)
parser.add_argument("--data_param1", type=int,
help="Sphere dimension if dataset = Cylinder."
"Total number of cells, if dataset = sphere_grid. "
"n0 if dataset = signal_1d.")
parser.add_argument("--data_param2", type=float,
help="Stretching factor for non-spherical dimensions if dataset = cylinder."
"Number of bins in theta, if dataset = sphere_grid.")
parser.add_argument("--arch", type=str, required=True)
parser.add_argument("--act", type=str, required=True)
parser.add_argument("--act_beta", type=float, default=1.0)
parser.add_argument("--bias", type=float, default=0)
parser.add_argument("--last_bias", type=float, default=0)
parser.add_argument("--var_bias", type=float, default=0)
parser.add_argument("--L", type=int)
parser.add_argument("--h", type=int, required=True)
parser.add_argument("--mix_angle", type=float, default=45)
parser.add_argument("--cv_L1", type=int, default=2)
parser.add_argument("--cv_L2", type=int, default=2)
parser.add_argument("--cv_h_base", type=float, default=1)
parser.add_argument("--cv_fsz", type=int, default=5)
parser.add_argument("--cv_pad", type=int, default=1)
parser.add_argument("--cv_stride_first", type=int, default=1)
parser.add_argument("--init_kernel", type=int, default=0)
parser.add_argument("--init_kernel_ptr", type=int, default=0)
parser.add_argument("--regular", type=int, default=1)
parser.add_argument('--running_kernel', nargs='+', type=float)
parser.add_argument("--final_kernel", type=int, default=0)
parser.add_argument("--final_kernel_ptr", type=int, default=0)
parser.add_argument("--final_headless", type=int, default=0)
parser.add_argument("--final_headless_ptr", type=int, default=0)
parser.add_argument("--init_features_ptr", type=int, default=0)
parser.add_argument("--final_features", type=int, default=0)
parser.add_argument("--final_features_ptr", type=int, default=0)
parser.add_argument("--train_kernel", type=int, default=1)
parser.add_argument("--store_kernel", type=int, default=0)
parser.add_argument("--delta_kernel", type=int, default=0)
parser.add_argument("--stretch_kernel", type=int, default=0)
parser.add_argument("--save_outputs", type=int, default=0)
parser.add_argument("--save_state", type=int, default=0)
parser.add_argument("--save_weights", type=int, default=0)
parser.add_argument("--alpha", type=float, required=True)
parser.add_argument("--f0", type=int, default=1)
parser.add_argument("--tau_over_h", type=float, default=0.0)
parser.add_argument("--tau_over_h_kernel", type=float)
parser.add_argument("--tau_alpha_crit", type=float)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--batch_min", type=int, default=1)
parser.add_argument("--batch_max", type=int, default=None)
parser.add_argument("--dt_amp", type=float, default=1.1)
parser.add_argument("--dt_dam", type=float, default=1.1**3)
parser.add_argument("--max_wall", type=float, required=True)
parser.add_argument("--max_wall_kernel", type=float)
parser.add_argument("--wall_max_early_stopping", type=float)
parser.add_argument("--chunk", type=int)
parser.add_argument("--max_dgrad", type=float, default=1e-4)
parser.add_argument("--max_dout", type=float, default=1e-1)
parser.add_argument("--loss", type=str, default="softhinge")
parser.add_argument("--loss_beta", type=float, default=20.0)
parser.add_argument("--loss_margin", type=float, default=1.0)
parser.add_argument("--stop_margin", type=float, default=1.0)
parser.add_argument("--stop_frac", type=float, default=1.0)
parser.add_argument("--bs", type=int)
parser.add_argument("--ckpt_step", type=int, default=100)
parser.add_argument("--ckpt_tau", type=float, default=1e4)
parser.add_argument("--output", type=str, required=True)
args = parser.parse_args()
args = args.__dict__
if args['device'] is None:
if torch.cuda.is_available():
args['device'] = 'cuda'
else:
args['device'] = 'cpu'
if args['pte'] is None:
args['pte'] = args['ptr']
if args['chunk'] is None:
args['chunk'] = max(args['ptr'], args['pte'], args['ptk'], 100000)
if args['max_wall_kernel'] is None:
args['max_wall_kernel'] = args['max_wall']
if args['tau_over_h_kernel'] is None:
args['tau_over_h_kernel'] = args['tau_over_h']
if args['seed_init'] == -1:
args['seed_init'] = args['seed_trainset']
with open(args['output'], 'wb') as handle:
pickle.dump(args, handle)
saved = False
try:
for data in execute(args):
data['git'] = git
with open(args['output'], 'wb') as handle:
pickle.dump(args, handle)
pickle.dump(data, handle)
saved = True
except:
if not saved:
os.remove(args['output'])
raise
if __name__ == "__main__":
main()