-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_unet.py
197 lines (152 loc) · 6.29 KB
/
train_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models
import collections
import math
import time
import pickle
import matplotlib.pyplot as plt
from PIL import Image
from tensorboardX import SummaryWriter
cmap = plt.cm.jet
from nyu_dataloader import DataLoader
import model
from unet import UNet
writer = SummaryWriter("runs/run1")
def weights_init(m):
# Initialize filters with Gaussian random weights
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.ConvTranspose2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class MaskedMSELoss(nn.Module):
def __init__(self):
super(MaskedMSELoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = (diff ** 2).mean()
return self.loss
class MaskedL1Loss(nn.Module):
def __init__(self):
super(MaskedL1Loss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = diff.abs().mean()
return self.loss
class berHuLoss(nn.Module):
def __init__(self):
super(berHuLoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
huber_c = torch.max(pred - target)
huber_c = 0.2 * huber_c
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
diff = diff.abs()
huber_mask = (diff > huber_c).detach()
diff2 = diff[huber_mask]
diff2 = diff2 ** 2
self.loss = torch.cat((diff, diff2)).mean()
return self.loss
class ScaleInvariantError(nn.Module):
def __init__(self, lamada=0.5):
super(ScaleInvariantError, self).__init__()
self.lamada = lamada
return
def forward(self, y_true, y_pred):
first_log = torch.log(torch.clamp(y_pred, 0.0001))
second_log = torch.log(torch.clamp(y_true, 0.0001))
d = first_log - second_log
loss = torch.mean(d * d) - self.lamada * torch.mean(d) * torch.mean(d)
return loss
def create_depth_color(depth):
d_min = np.min(depth)
d_max = np.max(depth)
depth_relative = (depth - d_min) / (d_max - d_min)
depth = (255 * cmap(depth_relative)[:, :, :3])
return depth
def save_image(model, x, y, batch, mode="train"):
pred = model(x)
npimg = pred.cpu().detach().numpy()
depth = create_depth_color(np.transpose(npimg[0], [1,2,0])[:, :, 0])
target = create_depth_color(np.transpose(y[0].cpu().numpy(), [1,2,0])[:, :, 0])
orig = 255 * np.transpose(x[0].cpu().numpy(), [1,2,0])
img = np.concatenate((orig, target, depth), axis =1)
img = Image.fromarray(img.astype('uint8'))
img.save('saved_images/%s_image_%d.jpg'%(mode, batch))
def adjust_learning_rate(optimizer, epoch, lr_init):
"""Sets the learning rate to the initial LR decayed by 2 every 5 epochs"""
lr = lr_init * (0.5 ** (epoch // 5))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(train_loader, val_loader, model, criterion_L1, criterion_MSE,
criterion_berHu, optimizer, epoch, batch_size):
model.train() # switch to train mode
eval_mode = False
init_lr = optimizer.param_groups[0]['lr']
for iter_ in range(num_batches):
input, target = next(train_loader.get_one_batch(batch_size))
input, target = input, target
input, target = input.cuda(), target.cuda()
torch.cuda.synchronize()
optimizer.zero_grad()
pred = model(input)
loss_L1 = criterion_L1(pred, target)
loss_MSE = criterion_MSE(pred, target)
loss_berHu = criterion_berHu(pred, target)
loss_SI = criterion_SI(pred, target)
writer.add_scalar('L1 Loss', loss_L1.item(), 25*epoch + iter_ + 1)
writer.add_scalar('MSE Loss', loss_MSE.item(), 25*epoch + iter_ + 1)
writer.add_scalar('SI Loss', loss_SI.item(), 25*epoch + iter_ + 1)
writer.add_scalar('berHu Loss', loss_berHu.item(), 25*epoch + iter_ + 1)
writer.add_scalars('loss/metrics', {
"L1": loss_L1.item(), "MSE": loss_MSE.item(),
"SI": loss_SI.item(), "berHu": loss_berHu.item()}
, 25 * epoch + iter_)
loss_gen = loss_SI + 5 * loss_L1
loss_gen.backward()
optimizer.step()
if (iter_ + 1) % 10 == 0:
save_image(model, input, target, iter_)
print('Train Epoch: {} Batch: [{}/{}], SI: {:0.4f}, L1 ={:0.3f}, MSE={:0.3f}, berHu={:0.3f}'.format(
epoch, iter_ + 1, num_batches, loss_SI.item(),
loss_L1.item(), loss_MSE.item(), loss_berHu.item()))
train_loader = DataLoader("../cnn_depth_tensorflow/data/nyu_datasets/")
val_loader = DataLoader("../cnn_depth_tensorflow/data/nyu_datasets/", mode="val")
model = UNet(3, 1).double()
model = nn.DataParallel(model).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.0002, weight_decay=1e-4)
criterion_L1 = MaskedL1Loss()
criterion_berHu = berHuLoss()
criterion_MSE = MaskedMSELoss()
criterion_SI = ScaleInvariantError()
batch_size = 8
num_epochs = 40
num_batches = len(train_loader)//batch_size
for epoch in range(25):
adjust_learning_rate(optimizer, epoch, 0.001)
train(train_loader, val_loader, model, criterion_L1, criterion_MSE, criterion_berHu,
optimizer, epoch, batch_size)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, './unet_si.pth')