-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrolling_statistics.py
executable file
·221 lines (167 loc) · 5.93 KB
/
rolling_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env ipython
import pandas as pd
import numpy as np
import copy
import unittest
from settings import DEBUG
from utils import debug
class RollingStatistics(object):
def __init__(self, columns, size=5):
self.df = pd.DataFrame(columns=columns)
self.size = size # Sliding Memory Window Size
self.counter = 0 # Current Index Pointer/Conuter
self.incompatible_keys = [] # Bookkeeping for back and forth type conversions
def _to_numpy(self, data):
d = copy.deepcopy(data)
self.incompatible_keys = []
for key, value in d.items():
if isinstance(value, list):
d[key] = np.array(value)
self.incompatible_keys.append(key)
return d
def _to_list(self, data):
for key, value in data.items():
if key in self.incompatible_keys and isinstance(value, np.ndarray):
data[key] = value.tolist()
self.incompatible_keys = []
return data
def moving_average(self, data):
"""
Returns a Moving Average _after_ adding the current data to the series.
data is a dict with column keys to be added to memory
"""
data = self._to_numpy(data)
idx = self.counter % self.size
self.df.loc[idx] = pd.Series(data)
columns = self.df.columns.values
moving_average = pd.DataFrame(columns=columns)
try:
for col in columns:
moving_average[col] = self.df[col].values.mean(keepdims=True)
else:
moving_average = self.df
except Exception as e:
debug('Error! Unable to compute moving average:', e)
if DEBUG: import ipdb; ipdb.set_trace()
moving_average = None
finally:
self.counter += 1
ma_dict = moving_average.to_dict(orient='records')[0]
return self._to_list(ma_dict)
def rolling_sum(self, data):
"""
Returns a Moving Average _after_ adding the current data to the series.
data is a dict with column keys to be added to memory
"""
data = self._to_numpy(data)
idx = self.counter % self.size
self.df.loc[idx] = pd.Series(data)
columns = self.df.columns.values
moving_average = pd.DataFrame(columns=columns)
try:
if len(self.df) > 1:
for col in columns:
moving_average.loc[0, col] = self.df[col].values.sum()
else:
moving_average = self.df
except Exception as e:
debug('Error! Unable to compute moving average:', e)
if DEBUG: import ipdb; ipdb.set_trace()
moving_average = None
finally:
self.counter += 1
ma_dict = moving_average.to_dict(orient='records')[0]
return self._to_list(ma_dict)
class TestRollingStatistics(unittest.TestCase):
# TODO(Manav): Include Assertions in each test case
def test_ma_size_1(self):
data = {
'scalar': 1,
'1d': np.array([1, 2, 3, 4]),
'2d': np.array([[1, 1],[2, 2]])
}
ma = RollingStatistics(columns=data.keys(), size=1)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print(data)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print(data)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print(data)
print(ma.moving_average(data))
def test_rs_size_1(self):
data = {
'scalar': 1,
'1d': np.array([1, 2, 3, 4]),
'2d': np.array([[1, 1],[2, 2]])
}
ma = RollingStatistics(columns=data.keys(), size=1)
print(ma.rolling_sum(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print(data)
print(ma.rolling_sum(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print(data)
print(ma.rolling_sum(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print(data)
print(ma.rolling_sum(data))
def test_ma_size_5(self):
data = {
'scalar': 1,
'1d': np.array([1, 2, 3, 4]),
'2d': np.array([[1, 1],[2, 2]])
}
ma = RollingStatistics(columns=data.keys(), size=5)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print("New Row: ", data)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print("New Row: ", data)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*2
print("New Row: ", data)
print(ma.moving_average(data))
def test_ma_list(self):
data = {
'scalar': 1,
'1d': [1, 2, 3, 4],
'2d': [[1, 1],[2, 2]]
}
ma = RollingStatistics(columns=data.keys(), size=1)
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*1
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*1
print(ma.moving_average(data))
# Genereate New Values
for key, values in data.items():
data[key] = values*1
print(ma.moving_average(data))
if __name__ == '__main__':
unittest.main()