-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathloaders_multilabel.py
357 lines (320 loc) · 12.4 KB
/
loaders_multilabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Script implementing multi label classification techniques
import sys, os
import matplotlib
import time
import pandas as pd
import ast
import numpy as np
import matplotlib.pyplot as plt
matplotlib.use("Agg")
#Classifiers
from skmultilearn.adapt import MLkNN
from sklearn.neighbors import KNeighborsClassifier as knnbase
from sklearn.multioutput import MultiOutputClassifier as MOC
from sklearn.ensemble import RandomForestClassifier as rf
from sklearn.naive_bayes import MultinomialNB as mnb
from skmultilearn.ensemble import MajorityVotingClassifier as mvc
from skmultilearn.ensemble import LabelSpacePartitioningClassifier as lspc
from skmultilearn.adapt import BRkNNaClassifier as knnA
from sklearn.multiclass import OneVsRestClassifier as OVR
from sklearn.linear_model import LogisticRegression as LR
from sklearn.naive_bayes import GaussianNB as GNB
# Multilabel techniques
from sklearn.preprocessing import MultiLabelBinarizer
from skmultilearn.problem_transform import BinaryRelevance
from skmultilearn.problem_transform import ClassifierChain as chain
from skmultilearn.problem_transform import LabelPowerset as power
# Data split types
from sklearn.model_selection import GridSearchCV as GSCV
from sklearn.model_selection import train_test_split
# Normalization and Scaling
from sklearn.preprocessing import MinMaxScaler as MMS
from sklearn.preprocessing import StandardScaler as SS
# Evaluation
from sklearn.metrics import accuracy_score, hamming_loss, precision_score, recall_score, f1_score
from sklearn.metrics import classification_report
from sklearn.metrics import multilabel_confusion_matrix as ML_matrix
from sklearn.metrics import precision_recall_fscore_support as score_multi
from sklearn.metrics import classification_report
from pickle import load, dump
# -------------------------------- HELPERS ------------------------------------------ #
def split_df(Xdata, labels, testsplit=0.3):
Xtrain,Xtest,ytrain,ytest = train_test_split(Xdata,labels,test_size=testsplit)
return Xtrain, Xtest, ytrain, ytest
# Rescale values to fit in a range; default: 0-1
def normalize(Xtrain, Xtest):
scaler = MMS(feature_range=(0,1))
Xtrainscaled = scaler.fit_transform(Xtrain)
Xtestscaled = scaler.transform(Xtest)
return Xtrainscaled, Xtestscaled
# Scale values such that mean = 0, std dev. = 1; Ensures robustness for new data.
def standardize(Xtrain, Xtest):
ss = SS()
Xtrainscaled = ss.fit_transform(Xtrain)
Xtestscaled = ss.transform(Xtest)
return Xtrainscaled, Xtestscaled, ss
def micro_avg(y_test_multilabel, predictions):
precision = precision_score(y_test_multilabel, predictions, average='micro')
recall = recall_score(y_test_multilabel, predictions, average='micro')
f1 = f1_score(y_test_multilabel, predictions, average='micro')
print("::Micro-average::")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
print("\n\n")
return precision, recall, f1
def macro_avg(y_test_multilabel, predictions):
precision = precision_score(y_test_multilabel, predictions, average='macro')
recall = recall_score(y_test_multilabel, predictions, average='macro')
f1 = f1_score(y_test_multilabel, predictions, average='macro')
print("\nMacro-average: ")
print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
return
def per_class_dist(ytest, ypred, classorder):
perclass = classification_report(ytest, ypred)
print("Per class classification report: ", perclass)
precision, recall, fscore, support = score_multi(ytest, ypred, average="micro")
print('micro-precision: {}'.format(precision))
print('micro-recall: {}'.format(recall))
print('micro-fscore: {}'.format(fscore))
print('support: {}'.format(support))
#print(classorder)
return
def get_binary_splits(fname="splitbinaries.txt"):
fourone = []
threetwo = []
with open(fname, "r") as f:
for line in f.readlines():
if fourone == []:
fourone = ast.literal_eval(line.rstrip())
else:
threetwo = ast.literal_eval(line.rstrip())
print("Binaries with train:test-4:1 split", fourone, "\n3:2 split", threetwo)
return fourone, threetwo
# ---------------------------- CLASSIFIERS & ML TECHNIQUES ------------------------- #
def base_rf(Xtrain, ytrain, Xtest, ytest, mlb):
model = rf(n_estimators= 1000, n_jobs= -1).fit(Xtrain, ytrain)
ypred = model.predict(Xtest)
ypredproba = model.predict_proba(Xtest)
print("Accuracy score: ", accuracy_score(ytest, ypred))
print("True labels: ", ytest)
print("Predicted: ", ypred)
hloss = hamming_loss(ytest, ypred)
print("Hloss: ", hloss)
micro_avg(ytest, ypred)
#print(ypredproba)
return
def base_knn(Xtrain, ytrain, Xtest, ytest, mlb):
model = knnbase(n_neighbors=3, n_jobs= -1).fit(Xtrain, ytrain)
ypred = model.predict(Xtest)
print("Accuracy score knn: ", accuracy_score(ytest, ypred))
print("True labels: ", ytest)
print("Predicted: ", ypred)
micro_avg(ytest, ypred)
return
def OneVsRest(Xtrain, ytrain, Xtest, ytest, mlb, ctype="lr"):
if ctype == "knn":
print("OneVsRest KNN")
model = OVR(knnbase(n_neighbors= 3), n_jobs=-1)
elif ctype == "lr":
print("OneVsRest LR")
model = OVR(LR(class_weight= "balanced"), n_jobs=-1)
else:
# rf
print("OneVsRest RF")
model = OVR(rf(n_estimators= 1000), n_jobs=-1)
classifier = model.fit(Xtrain, ytrain)
ypred = classifier.predict(Xtest)
print("True labels: \n", ytest)
print("Predicted labels: \n ", ypred)
score = accuracy_score(ytest, ypred)
print("Accuracy: ", score)
micro_avg(ytest, ypred)
return
def adaptedknn(Xtrainscaled, ytrain, Xtestscaled, ytest):
print("Classifier: Adapted Knn")
scores = dict()
for kval in range(2,15):
print("ML KNN, k=", kval)
classifier = MLkNN(k=kval).fit(Xtrainscaled, ytrain)
labelstest_pred = classifier.predict(Xtestscaled)
labeltestpred_prob = classifier.predict_proba(Xtestscaled)
score = accuracy_score(ytest, labelstest_pred)
hloss = hamming_loss(ytest, labelstest_pred)
prec, rec, f1 = micro_avg(ytest, labelstest_pred)
scores[kval] = [score, hloss, prec, rec, f1]
print("Accuracy Adapted Knn: ", score)
print("Hamming loss: ", hloss)
print(scores)
return classifier
def multioutputLR(Xtrainscaled, ytrain, Xtestscaled, ytest):
clf = MOC(LR(class_weight= "balanced")).fit(Xtrainscaled, ytrain)
predicted = clf.predict(Xtestscaled)
result = clf.score(Xtestscaled, ytest)
print("Multi Output- LR: ", result)
print("True labels: \n", ytest)
print("Predicted labels: \n ", predicted)
print("Confusion Matrix\n: ", ML_matrix(ytest, predicted))
return
def BRKNNA(Xtrainscaled, ytrain, Xtestscaled, ytest, mlb, k=3):
#knnA
print("BR Knn, k=3")
classifier = knnA(k=3)
classifier.fit(Xtrainscaled, ytrain)
labelstest_pred = classifier.predict(Xtestscaled)
score = accuracy_score(ytest, labelstest_pred)
#score = classifier.score(Xtestscaled, ytest)
print("Accuracy BRKnn: ", score)
print("Hamming loss: ", hamming_loss(ytest, labelstest_pred))
print("True labels: \n", ytest)
print("Predicted labels: \n ", labelstest_pred)
micro_avg(ytest, labelstest_pred)
#macro_avg(ytest, labelstest_pred)
params = {'k': range(1,3)}
score = 'f1_macro'
clf = GSCV(knnA(), params, scoring=score)
predicted = clf.fit(Xtrainscaled, ytrain)
print("GridSearch KnnA: Best params: ", clf.best_params_, " Best score: ", clf.best_score_)
#print("Confusion Matrix\n: ", ML_matrix(ytest, labelstest_pred))
return
def BR(ss, Xtrain, ytrain, Xtest, ytest, mlb, labels, top, ctype="rf"):
print("Classifier: ", ctype)
if ctype == "nb":
model = GNB()
elif ctype == "lr":
model = LR(class_weight= "balanced")
elif ctype == "knn":
model = knnbase(n_neighbors=3, n_jobs= -1)
else:
model = rf(n_estimators= 1000, n_jobs= -1)
br = BinaryRelevance(model).fit(Xtrain, ytrain)
ypred = br.predict(Xtest)
save_model(mlb, ss, br, "br_"+str(top))
acc = accuracy_score(ytest, ypred)
hloss = hamming_loss(ytest, ypred)
print("Accuracy score Binary Relevance: ", acc)
print("Hamming loss: ", hloss)
mprec, mrecall, mf1 = micro_avg(ytest, ypred)
#per_class_dist(ytest, ypred, labels)
#macro_avg(ytest, ypred)
return [acc, hloss, mprec, mrecall, mf1, ctype, model]
def ClassifierChain(ss, Xtrain, ytrain, Xtest, ytest, mlb, labels, top, ctype="rf"):
print("Classifier: ", ctype)
if ctype == "knn":
model = knnbase(n_neighbors=3, n_jobs= -1)
elif ctype == "lr":
model = LR(class_weight= "balanced")
else:
model = rf(n_estimators= 1000, n_jobs= -1)
cc = chain(model).fit(Xtrain, ytrain)
ypred = cc.predict(Xtest)
save_model(mlb, ss, cc, "cc_"+str(top))
acc = accuracy_score(ytest, ypred)
hloss = hamming_loss(ytest, ypred)
print("Accuracy score Classifier Chains: ", acc)
print("Hamming loss: ", hloss)
mprec, mrecall, mf1 = micro_avg(ytest, ypred)
#per_class_dist(ytest, ypred, labels)
#macro_avg(ytest, ypred)
return [acc, hloss, mprec, mrecall, mf1, ctype, model]
def labelpowerset(ss, Xtrain, ytrain, Xtest, ytest, mlb, labels, top, ctype="rf"):
print("Classifier: ", ctype)
if ctype == "knn":
model = knnbase(n_neighbors=3, n_jobs= -1)
elif ctype == "lr":
model = LR(class_weight= "balanced")
else:
model = rf(n_estimators= 1000, n_jobs= -1)
ps = power(model).fit(Xtrain, ytrain)
ypred = ps.predict(Xtest)
save_model(mlb, ss, ps, "lp_"+str(top))
acc = accuracy_score(ytest, ypred)
hloss = hamming_loss(ytest, ypred)
print("Accuracy score LabelPowerset: ", acc)
print("Hamming loss: ", hloss)
mprec, mrecall, mf1 = micro_avg(ytest, ypred)
#per_class_dist(ytest, ypred, labels)
#macro_avg(ytest, ypred)
return [acc, hloss, mprec, mrecall, mf1, ctype, model]
# Stats & Graph: Label distribution
def label_stats(sha_label_map):
#print(sha_label_map)
freq_labels = dict()
taglens = []
avglen = 0
for mali, taglst in sha_label_map.items():
print(mali, taglst)
tags = taglst[0]
taglen = len(tags)
taglens += [taglen]
avglen += taglen
for tag in tags:
if tag not in freq_labels:
freq_labels[tag] = 1
else:
freq_labels[tag] += 1
print("Label distribution: ", freq_labels)
# Stats: min tag per mal, max tag per mal, avg no. of tags per mal
taglens.sort()
print("Min tag length: ", taglens[0])
print("Max tag length: ", taglens[-1])
print("Avg no. of tags/mal: ", avglen/len(sha_label_map), len(sha_label_map))
return
def save_model(mlb, scaler, model, naming, dir="output/multi/"):
curwd = os.getcwd()
if not os.path.exists(dir):
os.system("mkdir "+curwd+"/output")
os.system("mkdir "+curwd+"/"+dir)
dump(model, open(dir+naming+'_model.pkl', 'wb'))
# save the scaler
dump(scaler, open(dir+naming+'_scaler.pkl', 'wb'))
dump(mlb, open(dir+naming+'_binarizer.pkl', 'wb'))
return
# ------------------------------- MODEL TESTING ------------------------------------- #
# Xtest: dataframe with features and malware label
def test_model(Xtest_label, mname, ztestlabels, mpath="output/multi/"):
mfullpath = mpath+mname+"_model.pkl"
spath = mpath+mname+"_scaler.pkl"
binpath = mpath+mname+"_binarizer.pkl"
if not os.path.exists(mfullpath):
print("Error! Pre trained multilabel model not found on path: 'output/multi/'. Train model using 'classify_topk.py' using options-D5/-D5_host, multiclass mode:1, --train")
return
# load the model
model = load(open(mfullpath, 'rb'))
# load the scaler
scaler = load(open(spath, 'rb'))
# load label binarizer
mlb = load(open(binpath, 'rb'))
# Drop labels 0/1 and add ztest as labels
newtestdf = Xtest_label.iloc[:,:-1].copy()
truelabels = mlb.transform(ztestlabels).tolist()[0]
print("All class labels (trained on): ", list(mlb.classes_))
print("ACTUAL labels for zeroday binary: ", ztestlabels, " encoded: ",truelabels)
time.sleep(2)
labellst = [truelabels]*42
Xtest = Xtest_label.iloc[:,:-1].copy()
labels = np.array(labellst)
X_test_scaled = scaler.transform(Xtest)
# Make predictions on the test df
ypred = model.predict(X_test_scaled)
mlb = load(open(binpath, 'rb'))
pred_tags = mlb.inverse_transform(ypred)
print("\nPredicted tags (per test instance): ", pred_tags)
#print("For following encoded labels: ", labels)
hloss = hamming_loss(labels, ypred)
print("\nHloss for test: ", hloss, mname)
micro_avg(labels, ypred)
time.sleep(2)
return
def test_models(Xtest, topk, ztestlabels = [["grayware", "worm", "ransomware", "downloader"]]):
if topk == 3:
mnames = ["br_3", "cc_3", "lp_3"] # models trained using topk=3
else:
mnames = ["br_1", "cc_1", "lp_1"] # models trained using topk=1
for mname in mnames:
if "br" in mname:
print("Testing Multilabel technique: Binary Relevance")
elif "cc" in mname:
print("Testing Multilabel technique: Classifier Chains")
else:
print("Testing Multilabel technique: Label Powerset")
test_model(Xtest, mname, ztestlabels)
return