-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathi2s_stereo.py
216 lines (209 loc) · 9.36 KB
/
i2s_stereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
##############################################
# STEREO INMP441 MEMS Microphone + I2S Module
##############################################
#
# -- Stereo frequency analysis with FFTs and
# -- saving .wav files of MEMS mic recording
#
# --------------------------------------------
# -- by Josh Hrisko, Maker Portal LLC
# --------------------------------------------
#
##############################################
#
import pyaudio
import matplotlib.pyplot as plt
import numpy as np
import time,wave,datetime,os,csv
##############################################
# function for FFT
##############################################
#
def fft_calc(data_vec):
data_vec = data_vec*np.hanning(len(data_vec)) # hanning window
N_fft = len(data_vec) # length of fft
freq_vec = (float(samp_rate)*np.arange(0,int(N_fft/2)))/N_fft # fft frequency vector
fft_data_raw = np.abs(np.fft.fft(data_vec)) # calculate FFT
fft_data = fft_data_raw[0:int(N_fft/2)]/float(N_fft) # FFT amplitude scaling
fft_data[1:] = 2.0*fft_data[1:] # single-sided FFT amplitude doubling
return freq_vec,fft_data
#
##############################################
# function for setting up pyserial
##############################################
#
def pyserial_start():
audio = pyaudio.PyAudio() # create pyaudio instantiation
##############################
### create pyaudio stream ###
# -- streaming can be broken down as follows:
# -- -- format = bit depth of audio recording (16-bit is standard)
# -- -- rate = Sample Rate (44.1kHz, 48kHz, 96kHz)
# -- -- channels = channels to read (1-2, typically)
# -- -- input_device_index = index of sound device
# -- -- input = True (let pyaudio know you want input)
# -- -- frmaes_per_buffer = chunk to grab and keep in buffer before reading
##############################
stream = audio.open(format = pyaudio_format,rate = samp_rate,channels = chans, \
input_device_index = dev_index,input = True, \
frames_per_buffer=CHUNK)
stream.stop_stream() # stop stream to prevent overload
return stream,audio
def pyserial_end():
stream.close() # close the stream
audio.terminate() # close the pyaudio connection
#
##############################################
# function for plotting data
##############################################
#
def plotter(plt_1=0,plt_2=0):
##########################################
# ---- time series and full-period FFT
if plt_1:
ax = axs[0] # top axis: time series
ax.plot(t_vec,data,
label='Time Series - Channel {0:1d}'.format(chan)) # time data
ax.set_xlabel('Time [s]') # x-axis in time
ax.set_ylabel('Amplitude') # y-axis amplitude
ax.legend(loc='upper left')
ax2 = axs[1] # bottom axis: frequency domain
ax2.plot(freq_vec,fft_data,
label='Frequency Spectrum - Channel {0:1d}'.format(chan)) # freq
ax2.set_xscale('log') # log-scale for better visualization
ax2.set_yscale('log') # log-scale for better visualization
ax2.set_xlabel('Frequency [Hz]')# frequency label
ax2.set_ylabel('Amplitude') # amplitude label
ax2.legend(loc='upper left')
# peak finder labeling on the FFT plot
max_indx = np.argmax(fft_data) # FFT peak index
ax2.annotate(r'$f_{max}$'+' = {0:2.1f}Hz'.format(freq_vec[max_indx]),
xy=(freq_vec[max_indx],fft_data[max_indx]),
xytext=(2.0*freq_vec[max_indx],
(fft_data[max_indx]+np.mean(fft_data))/2.0),
arrowprops=dict(facecolor='black',shrink=0.1)) # peak label
##########################################
# ---- spectrogram (FFT vs time)
if plt_2:
fig2,ax3 = plt.subplots(figsize=(12,8)) # second figure
t_spec = np.reshape(np.repeat(t_spectrogram,np.shape(freq_array)[1]),np.shape(freq_array))
y_plot = fft_array # data array
spect = ax3.pcolormesh(t_spec,freq_array,y_plot,shading='nearest') # frequency vs. time/amplitude
ax3.set_ylim([20.0,20000.0])
ax3.set_yscale('log') # logarithmic scale in freq.
cbar = fig2.colorbar(spect) # add colorbar
cbar.ax.set_ylabel('Amplitude',fontsize=16) # amplitude label
ax.set_title('INMP441 I$^{2}$S MEMS Microphone Time/Frequency Response',fontsize=16)
fig.subplots_adjust(hspace=0.3)
fig.savefig('I2S_stereo_time_series_fft_plot_white.png',dpi=300,
bbox_inches='tight',facecolor='#FFFFFF')
#
##############################################
# function for grabbing data from buffer
##############################################
#
def data_grabber(rec_len):
stream.start_stream() # start data stream
stream.read(CHUNK,exception_on_overflow=False) # flush port first
t_0 = datetime.datetime.now() # get datetime of recording start
print('Recording Started.')
data,data_frames = [],[] # variables
for frame in range(0,int((samp_rate*rec_len)/CHUNK)):
# grab data frames from buffer
stream_data = stream.read(CHUNK,exception_on_overflow=False)
data_frames.append(stream_data) # append data
data.append(np.frombuffer(stream_data,dtype=buffer_format))
stream.stop_stream() # stop data stream
print('Recording Stopped.')
return data,data_frames,t_0
#
##############################################
# function for analyzing data
##############################################
#
def data_analyzer(chunks_ii):
freq_array,fft_array = [],[]
t_spectrogram = []
data_array = []
t_ii = 0.0
for frame in chunks_ii:
freq_ii,fft_ii = fft_calc(frame) # calculate fft for chunk
freq_array.append(freq_ii) # append chunk freq data to larger array
fft_array.append(fft_ii) # append chunk fft data to larger array
t_vec_ii = np.arange(0,len(frame))/float(samp_rate) # time vector
t_ii+=t_vec_ii[-1]
t_spectrogram.append(t_ii) # time step for time v freq. plot
data_array.extend(frame) # full data array
t_vec = np.arange(0,len(data_array))/samp_rate # time vector for time series
freq_vec,fft_vec = fft_calc(data_array) # fft of entire time series
return t_vec,data_array,freq_vec,fft_vec,freq_array,fft_array,t_spectrogram
#
##############################################
# Save data as .wav file and .csv file
##############################################
#
def data_saver(t_0):
data_folder = './data/' # folder where data will be saved locally
if os.path.isdir(data_folder)==False:
os.mkdir(data_folder) # create folder if it doesn't exist
filename = datetime.datetime.strftime(t_0,
'%Y_%m_%d_%H_%M_%S_pyaudio') # filename based on recording time
wf = wave.open(data_folder+filename+'.wav','wb') # open .wav file for saving
wf.setnchannels(chans) # set channels in .wav file
wf.setsampwidth(audio.get_sample_size(pyaudio_format)) # set bit depth in .wav file
wf.setframerate(samp_rate) # set sample rate in .wav file
wf.writeframes(b''.join(data_frames)) # write frames in .wav file
wf.close() # close .wav file
return filename
#
##############################################
# Main Data Acquisition Procedure
##############################################
#
if __name__=="__main__":
#
###########################
# acquisition parameters
###########################
#
CHUNK = 44100 # frames to keep in buffer between reads
samp_rate = 44100 # sample rate [Hz]
pyaudio_format = pyaudio.paInt16 # 16-bit device
buffer_format = np.int16 # 16-bit for buffer
chans = 2 # only read 1 channel
dev_index = 0 # index of sound device
#
#############################
# stream info and data saver
#############################
#
stream,audio = pyserial_start() # start the pyaudio stream
record_length = 5 # seconds to record
input('Press Enter to Record Noise (Keep Quiet!)')
noise_chunks_all,_,_ = data_grabber(CHUNK/samp_rate) # grab the data
input('Press Enter to Record Data (Turn Freq. Generator On)')
data_chunks_all,data_frames,t_0 = data_grabber(record_length) # grab the data
data_saver(t_0) # save the data as a .wav file
pyserial_end() # close the stream/pyaudio connection
#
###########################
# stereo analysis section
###########################
#
plt.style.use('ggplot')
plt.rcParams.update({'font.size':16})
fig,axs = plt.subplots(2,1,figsize=(12,8)) # create figure
for chan in range(0,chans):
noise_chunks = [noise_chunks_all[ii][chan:][::2] for ii in range(0,np.shape(noise_chunks_all)[0])]
data_chunks = [data_chunks_all[ii][chan:][::2] for ii in range(0,np.shape(data_chunks_all)[0])]
_,_,_,fft_noise,_,_,_ = data_analyzer(noise_chunks) # analyze recording
t_vec,data,freq_vec,fft_data,\
freq_array,fft_array,t_spectrogram = data_analyzer(data_chunks) # analyze recording
# below, we're subtracting noise
fft_array = np.subtract(fft_array,fft_noise)
freq_vec = freq_array[0]
fft_data = np.mean(fft_array[1:,:],0)
fft_data = fft_data+np.abs(np.min(fft_data))+1.0
plotter(plt_1=1,plt_2=0) # select which data to plot
# ^(plt_1 is time/freq), ^(plt_2 is spectrogram)
plt.show() # show plot