-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
402 lines (346 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import os
os.environ['TRANSFORMERS_CACHE'] = '/mnt/storage/longmai/trans_cache/'
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging as hf_logging,
)
from peft import (
LoraConfig,
PeftModel,
prepare_model_for_kbit_training,
get_peft_model,
)
from datasets import load_dataset
from trl import SFTTrainer
import bitsandbytes as bnb
from torch.utils.data import Dataset, DataLoader
from accelerate import Accelerator
import argparse
import math
import json
import random
import sys
import re
from nltk import word_tokenize
from nltk.corpus import stopwords
import string
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from accelerate.utils import set_seed
from utils import add_personAB
def parse_args():
parser = argparse.ArgumentParser(description="Finetune LLMs")
parser.add_argument("--train_file", type=str, default='path to train_file',)
parser.add_argument("--exp_name", type=str, default='')
parser.add_argument("--ul_weight", type=float, default=0.5)
parser.add_argument("--max_length", type=int, default=512,)
parser.add_argument("--max_input_length", type=int, default=250)
parser.add_argument("--clip_norm", action="store_true", help="")
parser.add_argument("--max_pos_number", type=int, default=9)
parser.add_argument("--max_steps", type=int, default=1000,)
parser.add_argument("--num_response_per_input", type=int, default=4,)
parser.add_argument("--no_ul", action="store_true", help="")
parser.add_argument("--max_num_negatives_per_sample", type=int, default=50)
parser.add_argument("--skip_steps", type=int, default=-1)
parser.add_argument("--warmup_steps", type=int, default=-1)
parser.add_argument(
"--loss_steps",
type=int,
default=100,
)
parser.add_argument(
"--save_steps",
type=int,
default=500,
)
parser.add_argument(
"--model_name",
type=str,
default = 'mistralai/Mistral-7B-Instruct-v0.2',
required=False,
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=1,
required = True,
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=1, help="Total number of training epochs to perform.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--output_dir", type=str, default='cons_res2', help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
args = parser.parse_args()
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
logger = logging.getLogger(__name__)
def main():
args = parse_args()
accelerator = Accelerator()
logging.basicConfig(filename = os.path.join(args.output_dir, args.exp_name + '_log.txt'),
format="%(asctime)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(str(args))
logger.info(accelerator.state)
logger.info(accelerator.device)
set_seed(args.seed)
bnb_config = BitsAndBytesConfig(
load_in_4bit= True,
bnb_4bit_quant_type= "nf4",
bnb_4bit_compute_dtype= torch.bfloat16,
bnb_4bit_use_double_quant= True,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
model.config.use_cache = False
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained(args.model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.unk_token
tokenizer.pad_token_id = tokenizer.unk_token_id
tokenizer.add_special_tokens({"pad_token": tokenizer.pad_token})
tokenizer.add_eos_token = False
tokenizer.add_bos_token = False
tokenizer.padding_side = 'left'
model = prepare_model_for_kbit_training(model)
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if 'llama' in args.model_name:
peft_config = LoraConfig(
r=64,
lora_alpha=16,
bias="none",
lora_dropout=0.1,
task_type="CAUSAL_LM",
)
else:
peft_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"lm_head",
],
bias="none",
lora_dropout=0.05,
task_type="CAUSAL_LM",
)
model = get_peft_model(model, peft_config)
def prompt_dialog(dialog_context, option):
context = add_personAB(dialog_context, args.max_input_length)
if args.no_ul:
task = "Imagine you are person B and act as if you were a real individual. Please write the next response of person B."
else:
task = "Imagine you are person B and act as if you were a real individual. Think about all the possibilities in which person B might respond next and then provide the response that corresponds to possibility number #" + str(option) + '.'
prompt = "Given this conversation:\n\n"
prompt += '\n'.join(context) + '\n\n' + task
return prompt
START_INST = '[INST] '
END_INST = ' [/INST] '
skip_toks = stopwords.words('english') + list(string.punctuation)
prompt_end_tok = tokenizer.encode(END_INST.strip(' '), add_special_tokens=False)
def find_sublist(sublist, mainlist):
len_sub = len(sublist)
for i in range(len(mainlist)-len_sub+1):
if mainlist[i:i+len_sub] == sublist:
return i
return None
def standardize_text(text):
return re.sub(r'[^\w\s]', '', text).lower()
def remove_lead_punct(s):
return re.sub(r'^[^\w]+', '', s)
def create_batch(samples):
sample = samples[0]
assert len(sample['candidates']) >= args.num_response_per_input
sample['candidates'] = sample['candidates'][:args.num_response_per_input]
common_words = set(skip_toks)
prompts = []
promt_func = prompt_dialog
idxs = list(range(0, args.max_pos_number))
idxs = random.sample(idxs, len(sample['candidates']))
for candidate in sample['candidates']:
idx = idxs[sample['candidates'].index(candidate)]
inp = promt_func(sample['context'], idx + 1)
text = tokenizer.bos_token + START_INST + inp + END_INST
text += ' '.join((candidate + ' ' + tokenizer.eos_token).split()[:60])
prompts.append(text)
if args.no_ul is False:
neg_prompts = []
for i in range(0,len(sample['candidates'])):
idx = idxs[i]
for j in range(0,len(sample['candidates'])):
if i != j:
inp = promt_func(sample['context'], idx + 1)
text = tokenizer.bos_token + START_INST + inp + END_INST
text += ' '.join((sample['candidates'][j] + ' ' + tokenizer.eos_token).split()[:60])
neg_prompts.append(text)
random.shuffle(neg_prompts)
neg_prompts = neg_prompts[:args.max_num_negatives_per_sample]
prompts += neg_prompts
inputs = tokenizer(prompts, truncation=True, max_length=args.max_length, return_tensors = 'pt',
padding=True, add_special_tokens=False,)
prompt_ends, ul_labels, attention_masks = [], [], []
labels = inputs['input_ids'].tolist()
for j in range(0,len(labels)):
prompt_end_idx = find_sublist(prompt_end_tok, labels[j]) + len(prompt_end_tok) - 1
prompt_toks = labels[j][:prompt_end_idx].copy()
out_toks = labels[j][prompt_end_idx:].copy()
labels[j][:prompt_end_idx] = [-100] * len(labels[j][:prompt_end_idx])
lead_toks = prompts[j].split(END_INST)[1].split()[:-1]
lead_toks = [remove_lead_punct(tok) for tok in lead_toks if tok not in common_words and standardize_text(tok) not in common_words]
lead_toks = [tok for tok in lead_toks if tok != '']
if len(lead_toks) > 0:
tokenized_toks = tokenizer(lead_toks, add_special_tokens=False)['input_ids']
lead_toks = [tok[1] if word[0].isdigit() else tok[0] for word, tok in zip(lead_toks, tokenized_toks)]
ul_toks = [tok if tok in lead_toks else -100 for tok in out_toks]
prompt_ends.append(prompt_end_idx)
ul_labels.append([-100]*len(prompt_toks) + ul_toks)
batch={
"input_ids": inputs['input_ids'],
"labels": torch.tensor(labels),
"ul_labels": torch.tensor(ul_labels),
"attention_mask": inputs['attention_mask'],
"prompt_ends": torch.tensor(prompt_ends),
}
return batch
class DialogDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
return {
"context": item['context'],
"candidates": item['candidates']
}
train_data = [json.loads(line) for line in open(args.train_file)]
train_dataset = DialogDataset(train_data)
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size, shuffle=False, collate_fn = create_batch)
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.AdamW32bit(optimizer_grouped_parameters, lr= args.learning_rate, is_paged = True)
model,optimizer,train_dataloader = accelerator.prepare(model,optimizer,train_dataloader)
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
progress_bar = tqdm(range(args.max_train_steps))
completed_steps = 0
combine_loss = []
combine_uls = []
model.train()
for epoch in range(args.num_train_epochs):
random.seed(42)
for step, batch in enumerate(train_dataloader):
if completed_steps < args.skip_steps:
completed_steps += 1
progress_bar.update(1)
continue
num_sample = args.num_response_per_input
outputs = model(input_ids = batch['input_ids'],
attention_mask = batch['attention_mask'],
labels = batch['labels'],
return_dict = True, output_hidden_states = True)
logits = outputs.logits
mle_logits = logits[:num_sample].float()
labels = batch['labels'][:num_sample]
shift_logits = mle_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_logits = shift_logits.view(-1, model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
loss_fct = CrossEntropyLoss()
mle_loss = loss_fct(shift_logits, shift_labels)
if args.no_ul is False and completed_steps >= args.warmup_steps:
ul_logits = logits[num_sample:]
ul_logits = ul_logits[:,:-2,:].float()
labels = batch['ul_labels'][num_sample:]
labels = labels[:,:-2]
shift_logits = ul_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_logits = shift_logits.view(-1, model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_labels = shift_labels.to(shift_logits.device)
output_ul = F.softmax(shift_logits, dim = -1)
scores = 1.0 - output_ul
scores = torch.log(torch.clamp(scores, min=1e-6))
ul_loss = F.nll_loss(scores, shift_labels).float()
loss = mle_loss + args.ul_weight*ul_loss
else:
ul_loss = mle_loss
loss = mle_loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
completed_steps += 1
combine_loss.append(mle_loss.detach().item())
combine_uls.append(ul_loss.detach().item())
if completed_steps % args.gradient_accumulation_steps == 0:
if args.clip_norm:
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.3)
optimizer.step()
optimizer.zero_grad()
progress_bar.update(1)
if completed_steps % args.loss_steps == 0 and len(combine_loss) > 0:
avg_loss = sum(combine_loss) / len(combine_loss)
logger.info("MLE Loss:" + str(avg_loss))
if len(combine_uls) > 0:
avg_uls = sum(combine_uls) / len(combine_uls)
logger.info("UL Loss:" + str(avg_uls))
combine_loss = []
combine_uls = []
if completed_steps % 10 == 0:
torch.cuda.empty_cache()
if completed_steps % args.save_steps != 0:
continue
model.eval()
checkpoint_dir = os.path.join(args.output_dir, args.exp_name, 'check_' + str(completed_steps))
os.makedirs(checkpoint_dir, exist_ok=True)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(checkpoint_dir, save_function=accelerator.save)
tokenizer.save_pretrained(checkpoint_dir)
model.train()
if completed_steps >= args.max_steps:
sys.exit(0)
if __name__ == "__main__":
main()