-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsenior-capstone.Rmd
1090 lines (873 loc) · 57.9 KB
/
senior-capstone.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Senior capstone project"
output: html_notebook
---
This is the executable code for my senior capstone project, "Investigating the roles of innate immune cells in intestinal immunity and gut microbiome signaling."
---
Pre-processing
---
First, the relevant packages are loaded.
```{r Loading packages}
library(Seurat)
library(patchwork)
library(pathfindR)
library(sqldf)
library(dplyr)
library(ggplot2)
library(cowplot)
library(radiant.data)
library(org.Hs.eg.db)
library(textshape)
library(KEGGgraph)
```
The relevant files from indicated datasets (GSE150050, GSE185224, and GSE125527) are imported from GEO into the R environment. They are then converted to expression matrices.
GSE150050 contains scRNA-seq data of CD127+ cells (ILCs) from four tissue locations. This data is narrowed using SQL on metadata files to isolate colon samples and clustered ('Seurat clustering & ILC phenotype analysis'); ILC expression data is be extracted and subsequently used in the 'Metabolic pathway analysis' section.
```{r Importing datasets (GSE 150050)}
## Read in the counts data
counts.15 <- read.csv("C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/Data/GSE150050/STAR_raw_counts.csv", row.names=1)
## Read in the metadata
metadata.15 <- read.csv("C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/Data/GSE150050/GSE150050_metadata.csv", sep = ";", row.names=1)
## SQL script is used to narrow metadata.15 to colon samples
metadata15 <- as.data.frame(metadata.15)
metadata.15.colon <- sqldf("SELECT * FROM metadata15 WHERE TISSUE = 'COLON'")
## Metadata indicates all colon samples have distinct identifier 'GNI' in cell ID
counts15 <- as.data.frame(counts.15)
counts.15.colon <- counts15[,grepl("GNI", colnames(counts15))]
## Seurat object creation
seurat.15 <- CreateSeuratObject(counts = counts.15)
```
GSE185224 contains primary scRNA-seq data from the small intestines and colon epithelium of three donors. This data is be clustered ('Seurat clustering & ILC phenotype analysis'); ILC expression data is extracted and subsequently used in the 'Metabolic pathway analysis' section.
```{r Importing datasets (GSE 185224)}
## Read in the counts data
counts.18 <- Read10X_h5("C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/Data/GSE185224/GSE185224_Donor1_filtered_feature_bc_matrix.h5", use.names=TRUE)
## Seurat object creation from Gene Expression subset (not Antibody Capture subset)
seurat.18 <- CreateSeuratObject(counts = counts.18$`Gene Expression`)
```
GSE125527 contains primary scRNA-seq data of immune cells taken from fifteen patients presenting with or without ulcerative colitis/IBD. This data is divided by condition, processed, and re-integrated; it is then clustered with condition factored into analysis ('Condition-based clustering and phenotype composition analysis'); ILC expression data is extracted and subsequently used in the 'Metabolic pathway analysis' section.
```{r Importing datasets (GSE 125527)}
## Intestinal immune cells counts data from directory and append
dir.12.int <- "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/Data/GSE125527/UMI/HealthyI/"
files.12.int <- list.files(path = dir.12.int, pattern = ".tsv.gz", full.names = TRUE)
### Read in and aggregate samples
counts.12.int <- read.csv(files.12.int[1],sep="\t", row.names=1)
for(i in 2:length(files.12.int)){
counts.12b.int <- read.csv(files.12.int[i],sep="\t", row.names=1)
counts.12.int <- rbind(counts.12.int, counts.12b.int)
}
counts.12.int <- t(counts.12.int)
## Seurat objects creation
seurat.12.int <- CreateSeuratObject(counts = counts.12.int)
## PBMC counts data from directory and append
dir.12.healthy <- "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/Data/GSE125527/UMI/HealthyPBMC/"
dir.12.UC <- "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/Data/GSE125527/UMI/UCPBMC/"
files.12.pbmc.healthy <- list.files(path = dir.12.healthy, pattern = ".tsv.gz", full.names = TRUE)
files.12.pbmc.UC <- list.files(path = dir.12.UC, pattern = ".tsv.gz", full.names = TRUE)
### Read in and aggregate healthy control samples
counts.12.healthy <- read.csv(files.12.pbmc.healthy[1],sep="\t", row.names=1)
for(i in 2:length(files.12.pbmc.healthy)){
counts.12b.healthy <- read.csv(files.12.pbmc.healthy[i],sep="\t", row.names=1)
counts.12.healthy <- rbind(counts.12.healthy, counts.12b.healthy)
}
counts.12.pbmc.healthy <- t(counts.12.healthy)
### Make metadata for later analysis
metadata.12.healthy <- data.frame(x1= colnames(counts.12.pbmc.healthy), x2 = "healthy")
colnames(metadata.12.healthy) <- c("barcode", "condition")
### Read in and aggregate UC samples
counts.12.UC <- read.csv(files.12.pbmc.UC[1],sep="\t", row.names=1)
for(i in 2:length(files.12.pbmc.UC)){
counts.12b.UC <- read.csv(files.12.pbmc.UC[i],sep="\t", row.names=1)
counts.12.UC <- rbind(counts.12.UC, counts.12b.UC)
}
counts.12.pbmc.UC <- t(counts.12.UC)
### Make metadata for later analysis
metadata.12.UC <- data.frame(x1= colnames(counts.12.pbmc.UC), x2 = "UC")
colnames(metadata.12.UC) <- c("barcode", "condition")
metadata.12.UC <- column_to_rownames(metadata.12.UC, loc = 1)
## Seurat objects creation
seurat.12.healthy <- CreateSeuratObject(counts = counts.12.pbmc.healthy, metadata = metadata.12.healthy)
seurat.12.UC <- CreateSeuratObject(counts = counts.12.pbmc.UC, metadata = metadata.12.UC)
## Create combined object
counts.12 <- rbind(t(counts.12.pbmc.healthy), t(counts.12.pbmc.UC))
counts.12 <- t(counts.12)
metadata.12 <- rbind(metadata.12.healthy, metadata.12.UC)
metadata.12 <- column_to_rownames(metadata.12, loc = 1)
seurat.12 <- CreateSeuratObject(counts = counts.12)
seurat.12 <- AddMetaData(seurat.12, metadata.12, col.name = "condition")
```
Then, the data pre-processed for further analysis.
```{r Converting datasets to Seurat objects (GSE 150050)}
## QC and valid cell selection
seurat.15[["percent.mt"]] <- PercentageFeatureSet(seurat.15, pattern = "^MT-")
VlnPlot(seurat.15, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
seurat.15 <- subset(seurat.15, subset = nFeature_RNA > 200 & nFeature_RNA < 6000)
## Normalization of data
seurat.15 <- NormalizeData(seurat.15)
### Feature selection
seurat.15 <- FindVariableFeatures(seurat.15, selection.method = "vst", nfeatures = 2000)
### Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(seurat.15), 10)
### Plot variable features with and without labels
plot1 <- VariableFeaturePlot(seurat.15)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-varfeatures.png", width= 900, height=480)
plot1
plot2
dev.off()
## Scaling of data
all.genes <- rownames(seurat.15)
seurat.15 <- ScaleData(seurat.15, features = all.genes)
## Perform linear dimension reduction
seurat.15 <- RunPCA(seurat.15, features = VariableFeatures(object = seurat.15))
print(seurat.15[["pca"]], dims = 1:5, nfeatures = 5)
DimPlot(seurat.15, reduction = "pca")
DimHeatmap(seurat.15, dims = 1, cells = 500, balanced = TRUE)
DimHeatmap(seurat.15, dims = 1:15, cells = 500, balanced = TRUE)
seurat.15 <- JackStraw(seurat.15, num.replicate = 100)
seurat.15 <- ScoreJackStraw(seurat.15, dims = 1:20)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-jackstraw.png", width= 700, height=480)
JackStrawPlot(seurat.15, dims = 1:15)
dev.off()
## Save object for future recall
saveRDS(seurat.15, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat15-preprocessed.rds")
```
```{r Converting datasets to Seurat objects (GSE 185224)}
## QC and valid cell selection
seurat.18[["percent.mt"]] <- PercentageFeatureSet(seurat.18, pattern = "^MT-")
VlnPlot(seurat.18, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
seurat.18 <- subset(seurat.18, subset = nFeature_RNA > 200 & nFeature_RNA < 6000)
## Normalization of data
seurat.18 <- NormalizeData(seurat.18)
### Feature selection
seurat.18 <- FindVariableFeatures(seurat.18, selection.method = "vst", nfeatures = 2000)
### Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(seurat.18), 10)
### Plot variable features with and without labels
plot3 <- VariableFeaturePlot(seurat.18)
plot4 <- LabelPoints(plot = plot3, points = top10, repel = TRUE)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat18-varfeatures.png", width= 900, height=480)
plot3 + plot4
dev.off()
## Scaling of data
all.genes <- rownames(seurat.18)
seurat.18 <- ScaleData(seurat.18, features = all.genes)
## Perform linear dimension reduction
seurat.18 <- RunPCA(seurat.18, features = VariableFeatures(object = seurat.18))
print(seurat.18[["pca"]], dims = 1:5, nfeatures = 5)
DimPlot(seurat.18, reduction = "pca")
DimHeatmap(seurat.18, dims = 1, cells = 500, balanced = TRUE)
DimHeatmap(seurat.18, dims = 1:15, cells = 500, balanced = TRUE)
seurat.18 <- JackStraw(seurat.18, num.replicate = 100)
seurat.18 <- ScoreJackStraw(seurat.18, dims = 1:20)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat18-jackstraw.png", width= 700, height=480)
JackStrawPlot(seurat.18, dims = 1:15)
dev.off()
## Save object for future recall
saveRDS(seurat.18, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat18-preprocessed.rds")
```
```{r Converting datasets to Seurat objects (GSE 125527)}
# Intestinal immune cells
## QC and valid cell selection
seurat.12.int[["percent.mt"]] <- PercentageFeatureSet(seurat.12.int, pattern = "^MT-")
VlnPlot(seurat.12.int, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
seurat.12.int <- subset(seurat.12.int, subset = nFeature_RNA > 200 & nFeature_RNA < 6000)
## Normalization of data
seurat.12.int <- NormalizeData(seurat.12.int)
### Feature selection
seurat.12.int <- FindVariableFeatures(seurat.12.int, selection.method = "vst", nfeatures = 2000)
### Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(seurat.12.int), 10)
### Plot variable features with and without labels
plot1 <- VariableFeaturePlot(seurat.12.int)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12int-varfeatures.png", width= 900, height=480)
plot1 + plot2
dev.off()
## Scaling of data
all.genes <- rownames(seurat.12.int)
seurat.12.int <- ScaleData(seurat.12.int, features = all.genes)
## Perform linear dimension reduction
seurat.12.int <- RunPCA(seurat.12.int, features = VariableFeatures(object = seurat.12.int))
print(seurat.12.int[["pca"]], dims = 1:5, nfeatures = 5)
DimPlot(seurat.12.int, reduction = "pca")
DimHeatmap(seurat.12.int, dims = 1, cells = 500, balanced = TRUE)
DimHeatmap(seurat.12.int, dims = 1:15, cells = 500, balanced = TRUE)
seurat.12.int <- JackStraw(seurat.12.int, num.replicate = 100)
seurat.12.int <- ScoreJackStraw(seurat.12.int, dims = 1:20)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12int-jackstraw.png", width= 700, height=480)
JackStrawPlot(seurat.12.int, dims = 1:15)
dev.off()
## Save object for future recall
saveRDS(seurat.12.int, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12int-preprocessed.rds")
# PBMCs by condition
seurat.12.healthy[["percent.mt"]] <- PercentageFeatureSet(seurat.12.healthy, pattern = "^MT-")
VlnPlot(seurat.12.healthy, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
seurat.12.healthy <- subset(seurat.12.healthy, subset = nFeature_RNA > 200 & nFeature_RNA < 4000)
seurat.12.UC[["percent.mt"]] <- PercentageFeatureSet(seurat.12.UC, pattern = "^MT-")
VlnPlot(seurat.12.UC, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
seurat.12.UC <- subset(seurat.12.UC, subset = nFeature_RNA > 200 & nFeature_RNA < 3000)
## Normalization of data
seurat.12.healthy <- NormalizeData(seurat.12.healthy)
seurat.12.UC <- NormalizeData(seurat.12.UC)
### Feature selection
seurat.12.healthy <- FindVariableFeatures(seurat.12.healthy, selection.method = "vst", nfeatures = 2000)
seurat.12.UC <- FindVariableFeatures(seurat.12.UC, selection.method = "vst", nfeatures = 2000)
top10 <- head(VariableFeatures(seurat.12.healthy), 10)
top10 <- head(VariableFeatures(seurat.12.UC), 10)
### Plot individual variable features with and without labels
print(plot5 <- VariableFeaturePlot(seurat.12.healthy))
print(plot6 <- LabelPoints(plot = plot5, points = top10, repel = TRUE))
print(plot7 <- VariableFeaturePlot(seurat.12.UC))
print(plot8 <- LabelPoints(plot = plot7, points = top10, repel = TRUE))
png(file = "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/12healthy-varfeatures.png", width= 900, height=480)
plot5 + plot6
dev.off()
png(file = "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12UC-varfeatures.png", width= 900, height=480)
plot7 + plot8
dev.off()
### Normalize and identify variable features in combined Seurat object
seurat.12.list <- SplitObject(seurat.12, split.by = "condition")
seurat.12.list <- lapply(X = seurat.12.list, FUN = function(x) {
x <- NormalizeData(x)
x <- FindVariableFeatures(x, selection.method = "vst", nfeatures=2000)
})
### Select features that are repeatedly variable across datasets for integration
seurat.12.features <- SelectIntegrationFeatures(object.list = seurat.12.list)
seurat.12.anchors <- FindIntegrationAnchors(object.list = seurat.12.list, anchor.features = seurat.12.features)
### Create an 'integrated' data assay
seurat.12 <- IntegrateData(anchorset = seurat.12.anchors)
DefaultAssay(seurat.12) <- "integrated"
### Scaling and linear dimension reduction
seurat.12 <- ScaleData(seurat.12, verbose = FALSE)
seurat.12 <- RunPCA(seurat.12, npcs = 30, verbose = FALSE)
print(seurat.12[["pca"]], dims = 1:5, nfeatures = 5)
DimHeatmap(seurat.12, dims = 1, cells = 500, balanced = TRUE)
DimHeatmap(seurat.12, dims = 1:15, cells = 500, balanced = TRUE)
seurat.12 <- JackStraw(seurat.12, num.replicate = 100)
seurat.12 <- ScoreJackStraw(seurat.12, dims = 1:20)
png(file = "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12-jackstraw.png", width= 700, height=480)
JackStrawPlot(seurat.12, dims = 1:15)
dev.off()
seurat.12.healthy <- ScaleData(seurat.12.healthy, verbose = FALSE)
seurat.12.healthy <- RunPCA(seurat.12.healthy, npcs = 30, verbose = FALSE)
print(seurat.12.healthy[["pca"]], dims = 1:5, nfeatures = 5)
seurat.12.UC <- ScaleData(seurat.12.UC, verbose = FALSE)
seurat.12.UC <- RunPCA(seurat.12.UC, npcs = 30, verbose = FALSE)
print(seurat.12.UC[["pca"]], dims = 1:5, nfeatures = 5)
## Save object for future recall
saveRDS(seurat.12.healthy, file = "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12healthy-preprocessed.rds")
## Save object for future recall
saveRDS(seurat.12.UC, file = "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12UC-preprocessed.rds")
## Save object for future recall
saveRDS(seurat.12, file = "C:/Users/maiabennett/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12-preprocessed.rds")
```
---
Clustering and phenotype composition analysis
---
This section contains code for Seurat clustering & ILC phenotype assignment.
```{r Initial clustering and cell type assignment (GSE 150050)}
## Cluster the cells
seurat.15 <- FindNeighbors(seurat.15, dims = 1:10)
seurat.15 <- FindClusters(seurat.15, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.15), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.15 <- RunUMAP(seurat.15, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-initialUMAP.png")
DimPlot(seurat.15, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.15.markers <- FindAllMarkers(seurat.15, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.15 <- seurat.15.markers %>%
group_by(cluster) %>%
slice_max(n = 3, order_by = avg_log2FC)
write.table(manual.curate.15, file="manual.curate.15.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cells
### ILC1s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT-, CD294/PTGDR2-, CD3-
### ILC2s: CD127/IL7R+, CD161/KLRB1+, CD294/PTGDR2+, GATA3+, CD3-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+, CD3-
### NKs: CD56/NCAM1+,CD3-, EOMES+
### Ts: CD3/CD3D+ (definite)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-initialmarkers.png")
FeaturePlot(seurat.15, features = c("CD3D", "NCAM1", "EOMES", "IL7R", "PTGDR2", "KIT", "KLRB1", "GATA3"), min.cutoff = "q9")
dev.off()
## Assign cell type identity to clusters
new.cluster.ids <- c("ILC3", "T cell", "ILC1", "ILC3", "Indeterminate", "Indeterminate", "Indeterminate ILC", "T cell", "T cell", "NK cell", "Indeterminate", "ILC2", "Indeterminate", "Indeterminate ILC")
names(new.cluster.ids) <- levels(seurat.15)
seurat.15 <- RenameIdents(seurat.15, new.cluster.ids)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-labeledUMAP.png")
DimPlot(seurat.15, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
dev.off()
## Visualize specific markers by cluster
#Idents(seurat.15) <- factor(Idents(seurat.15), levels = c("ILC3", "T cell", "ILC1", "ILC3", "Indeterminate", "Indeterminate", "Indeterminate ILC", "T cell", "T cell", "NK cell", "Indeterminate", "ILC2", "Indeterminate", "Indeterminate ILC"))
markers.to.plot <- c("CD3D", "NCAM1", "EOMES", "IL7R", "PTGDR2", "KIT", "KLRB1", "GATA3")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-dotplot.png", width= 700, height=480)
DotPlot(seurat.15, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
RotatedAxis()
dev.off()
## Subset to cells with determinate and non-T cell identities
seurat.15.ilc <- subset(seurat.15, idents = c("ILC1", "ILC2", "ILC3", "NK cell", "Indeterminate ILC"))
## Cluster subset
seurat.15.ilc <- FindNeighbors(seurat.15.ilc, dims = 1:10)
seurat.15.ilc <- FindClusters(seurat.15.ilc, resolution = 0.5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.15.ilc <- RunUMAP(seurat.15.ilc, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15ilc-initialUMAP.png")
DimPlot(seurat.15.ilc, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.15.ilc.markers <- FindAllMarkers(seurat.15.ilc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.15.ilc <- seurat.15.ilc.markers %>%
group_by(cluster) %>%
slice_max(n = 3, order_by = avg_log2FC)
write.table(manual.curate.15.ilc, file="manual.curate.15.ilc.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cell types
### ILC1s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT-, CD294/PTGDR2-
### ILC2s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+-, CD294/PTGDR2+
### ILC3s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+, CD294/PTGDR-
### NKs: CD56/NCAM1+, EOMES+
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15ilc-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.15.ilc, features = c("NCAM1", "EOMES", "IL7R", "PTGDR2", "KIT", "KLRB1", "GATA3"), min.cutoff = "q9")
dev.off()
## Assign cell type identity to clusters
new.cluster.ids <- c("ILC3", "ILC3", "ILC1", "ILC3", "NK", "NK", "ILC2", "ILC2", "Indeterminate")
names(new.cluster.ids) <- levels(seurat.15.ilc)
seurat.15.ilc <- RenameIdents(seurat.15.ilc, new.cluster.ids)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15ilc-labeledUMAP.png")
DimPlot(seurat.15.ilc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
dev.off()
## Visualize specific markers by cell type
#Idents(seurat.15.ilc) <- factor(Idents(seurat.15.ilc), levels = c("ILC3", "ILC3", "ILC1", "ILC3", "NK", "NK", "ILC2", "ILC2", "Indeterminate"))
markers.to.plot <- c("NCAM1", "EOMES", "IL7R", "PTGDR2", "KIT", "KLRB1", "GATA3")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15ilc-dotplot.png")
DotPlot(seurat.15.ilc, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
RotatedAxis()
dev.off()
## Save objects for future recall
saveRDS(seurat.15, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat15-clustered.rds")
saveRDS(seurat.15.ilc, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat15ilc-clustered.rds")
```
```{r Initial clustering and cell type assignment (GSE 185224)}
## Cluster the cells
seurat.18 <- FindNeighbors(seurat.18, dims = 1:10)
seurat.18 <- FindClusters(seurat.18, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.18), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.18 <- RunUMAP(seurat.18, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat18-initialUMAP.png")
DimPlot(seurat.18, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.18.markers <- FindAllMarkers(seurat.18, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.18 <- seurat.18.markers %>%
group_by(cluster) %>%
slice_max(n = 2, order_by = avg_log2FC)
write.table(manual.curate.18, file="manual.curate.18.txt", row.names=TRUE, col.names=TRUE)
## Assign cell type identity to clusters
new.cluster.ids <- c("Distal enterocyte", "Indeterminate enterocyte", "Undifferentiated", "Proximal enterocyte", "Proximal enterocyte", "Paneth", "Undifferentiated", "Intestinal globlet", "Undifferentiated", "Distal enterocyte", "Immune", "Proximal enterocyte", "Indeterminate enterocyte", "Paneth", "Immune", "Paneth", "Enteroendocrine")
names(new.cluster.ids) <- levels(seurat.18)
seurat.18 <- RenameIdents(seurat.18, new.cluster.ids)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat18-labeledUMAP.png")
DimPlot(seurat.18, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
dev.off()
## Subset clusters with immune identity
seurat.18.immune <- subset(seurat.18, idents = "Immune")
## Cluster immune cell subset
seurat.18.immune <- FindNeighbors(seurat.18.immune, dims = 1:10)
seurat.18.immune <- FindClusters(seurat.18.immune, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.18.immune), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.18.immune <- RunUMAP(seurat.18.immune, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat18immune-initialUMAP.png")
DimPlot(seurat.18.immune, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.18.immune.markers <- FindAllMarkers(seurat.18.immune, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.18.immune <- seurat.18.immune.markers %>%
group_by(cluster) %>%
slice_max(n = 2, order_by = avg_log2FC)
write.table(manual.curate.18.immune, file="manual.curate.18.immune.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cells from a predominant epithelial population
## ILCs (CD127/IL7R+, CD117/KIT +, CD161/KLRB1+); no distinct signatures found
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat18immune-markers.png", width= 700, height=480)
FeaturePlot(seurat.18.immune, features = c("CD4", "CD8A", "IL7R", "PTGDR2", "KIT", "CD14", "CD19", "KLRB1"), min.cutoff = "q9")
dev.off()
# new.cluster.ids <- c("")
# names(new.cluster.ids) <- levels(seurat.18.immune)
# seurat.18 <- RenameIdents(seurat.18, new.cluster.ids)
# DimPlot(seurat.18.immune, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
#
# ## Plot specific markers
# Idents(seurat.18.immune) <- factor(Idents(seurat.18.immune), levels = c(""))
# markers.to.plot <- c("CD4", "CD8A", "IL7R", "PTGDR2", "KIT", "CD14", "CD19", "KLRB1")
# DotPlot(seurat.18.immune, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
# RotatedAxis()
# Save objects for future recall
saveRDS(seurat.18, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat18-clustered.rds")
saveRDS(seurat.18.immune, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat18immune-clustered.rds")
```
This section contains code for the intestinal immune cell samples from GSE125527. This code is modeled on other samples from the same dataset; however, it has not been tested yet.
```{r Initial clustering and cell type assignment (GSE 125527)}
# Intestinal immune cells
## Cluster the cells
seurat.12.int <- FindNeighbors(seurat.12.int, dims = 1:10)
seurat.12.int <- FindClusters(seurat.12.int, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.12.int), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12.int <- RunUMAP(seurat.12.int, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12int-initialUMAP.png")
DimPlot(seurat.12.int, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.12.int.markers <- FindAllMarkers(seurat.12.int, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.int <- seurat.12.int.markers %>%
group_by(cluster) %>%
slice_max(n = 3, order_by = avg_log2FC)
write.table(manual.curate.12.int, file="manual.curate.12.int.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cells
### ILC1s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT-, CD294/PTGDR2-, CD3-, ID2+, CD8-, TBX21+
### ILC2s: CD127/IL7R+, CD161/KLRB1+, CD294/PTGDR2+, GATA3+, CD3-, ID2+, CD8-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+, CD3-, ID2+, CD8-, IL23R+
### NKs: CD56/NCAM1+,CD3-, EOMES+, TBX21+
### Ts: CD3/CD3D+ (definite)
### Used CellMarker2.0 to call myeloids and B cells
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12int-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12.int, features = c("CD3D", "CD8A", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "GATA3", "ID2", "IL23R", "TBX21"), min.cutoff = "q9")
dev.off()
## Assign cell type identity to clusters
new.cluster.ids <- c("Dendritic cell", "Indeterminate", "Indeterminate", "Indeterminate", "B cell", "NK or T cell", "B cell", "Dendritic cell", "NK or T cell", "B cell", "Indeterminate", "Dendritic cell", "Dendritic cell")
names(new.cluster.ids) <- levels(seurat.12.int)
seurat.12.int <- RenameIdents(seurat.12.int, new.cluster.ids)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12int-labeledUMAP.png")
DimPlot(seurat.12.int, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
dev.off()
## Visualize specific markers by cluster
markers.to.plot <- c("CD3D", "CD8A", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "GATA3", "ID2", "IL23R", "TBX21")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12int-dotplot.png")
DotPlot(seurat.12.int, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
RotatedAxis()
dev.off()
## Subset to cells with possible ILC marker expression and non-determinate T cell, B cell, or dendritic cell identity
seurat.12.int.inter <- subset(seurat.12.int, idents = c("Indeterminate", "NK or T cell"))
## Cluster subset
seurat.12.int.inter <- FindNeighbors(seurat.12.int.inter, dims = 1:10)
seurat.12.int.inter <- FindClusters(seurat.12.int.inter, resolution = 0.5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12.int.inter <- RunUMAP(seurat.12.int.inter, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intinter-initialUMAP.png")
DimPlot(seurat.12.int.inter, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.12.int.inter.markers <- FindAllMarkers(seurat.12.int.inter, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.int.inter <- seurat.12.int.inter.markers %>%
group_by(cluster) %>%
slice_max(n = 3, order_by = avg_log2FC)
write.table(manual.curate.12.int.inter, file="manual.curate.12.int.inter.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cells
### ILC1s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT-, CD294/PTGDR2-, CD3-, ID2+, CD8-, TBX21+
### ILC2s: CD127/IL7R+, CD161/KLRB1+, CD294/PTGDR2+, GATA3+, CD3-, ID2+, CD8-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+, CD3-, ID2+, CD8-, IL23R+
### NKs: CD56/NCAM1+,CD3-, EOMES+, TBX21+
### Ts: CD3/CD3D+ (definite)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intinter-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12.int.inter, features = c("CD3D", "CD8A", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "GATA3", "ID2", "IL23R", "TBX21"), min.cutoff = "q9")
dev.off()
## Subset to cells not expressing non-ILC marker CD8
seurat.12.int.inter2 <- subset(seurat.12.int.inter, idents = c(0,1,2,6,7))
## Cluster subset
seurat.12.int.inter2 <- FindNeighbors(seurat.12.int.inter2, dims = 1:10)
seurat.12.int.inter2 <- FindClusters(seurat.12.int.inter2, resolution = 0.5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12.int.inter2 <- RunUMAP(seurat.12.int.inter2, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intinter2-initialUMAP.png")
DimPlot(seurat.12.int.inter2, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.12.int.inter2.markers <- FindAllMarkers(seurat.12.int.inter2, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.int.inter2 <- seurat.12.int.inter2.markers %>%
group_by(cluster) %>%
slice_max(n = 3, order_by = avg_log2FC)
write.table(manual.curate.12.int.inter2, file="manual.curate.12.int.inter2.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cells
### ILC1s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT-, CD294/PTGDR2-, CD3-, ID2+, CD8-, TBX21+
### ILC2s: CD127/IL7R+, CD161/KLRB1+, CD294/PTGDR2+, GATA3+, CD3-, ID2+, CD8-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+, CD3-, ID2+, CD8-, IL23R+
### NKs: CD56/NCAM1+,CD3-, EOMES+, TBX21+
### Ts: CD3/CD3D+ (definite)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intinter2-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12.int.inter, features = c("CD3D", "CD8A", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "GATA3", "ID2", "IL23R", "TBX21"), min.cutoff = "q9")
dev.off()
## Subset to cells with possible ILC identity based on CD127 and CD161 expression
seurat.12.int.ilc <- subset(seurat.12.int.inter, idents = c(0,1,3,4,5))
## Cluster subset
seurat.12.int.ilc <- FindNeighbors(seurat.12.int.ilc, dims = 1:10)
seurat.12.int.ilc <- FindClusters(seurat.12.int.ilc, resolution = 0.5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12.int.ilc <- RunUMAP(seurat.12.int.ilc, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intilc-initialUMAP.png")
DimPlot(seurat.12.int.ilc, reduction = "umap", label = TRUE)
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
seurat.12.int.ilc.markers <- FindAllMarkers(seurat.12.int.ilc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.int.ilc <- seurat.12.int.ilc.markers %>%
group_by(cluster) %>%
slice_max(n = 3, order_by = avg_log2FC)
write.table(manual.curate.12.int.ilc, file="manual.curate.12.int.ilc.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify immune cells
### ILC1s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT-, CD294/PTGDR2-, CD3-, ID2+, CD8-, TBX21+
### ILC2s: CD127/IL7R+, CD161/KLRB1+, CD294/PTGDR2+, GATA3+, CD3-, ID2+, CD8-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, CD117/KIT+, CD3-, ID2+, CD8-, IL23R+
### NKs: CD56/NCAM1+,CD3-, EOMES+, TBX21+
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intilc-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12.int.ilc, features = c("CD3D", "CD8A", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "GATA3", "ID2", "IL23R", "TBX21"), min.cutoff = "q9")
dev.off()
## Assign cell type identity to clusters
## CD3A was prevalent across all clusters, even after multiple runs of subsetting
## And ILC determining markers are not found in the matrix (can also be expressed on T cells)
## As such, ILCs will be assesed in groups likely containing ILCs based on marker expression (1,2)
## This is likely due to the 'mirroring' of Th subsets by ILCs
new.cluster.ids <- c("Non-ILCs", "Contains ILCs", "Contains ILCs", "Non-ILCs", "Non-ILCs")
names(new.cluster.ids) <- levels(seurat.12.int.ilc)
seurat.12.int.ilc <- RenameIdents(seurat.12.int.ilc, new.cluster.ids)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intilc-labeledUMAP.png")
DimPlot(seurat.12.int.ilc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
dev.off()
## Visualize specific markers by cell type
#Idents(seurat.12.int.ilc) <- factor(Idents(seurat.12.int.ilc), levels = c(""))
markers.to.plot <- c("CD3D", "CD8A", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "GATA3", "ID2", "IL23R", "TBX21")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intilc-dotplot.png")
DotPlot(seurat.12.int.ilc, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
RotatedAxis()
dev.off()
## Save objects for future recall
saveRDS(seurat.12.int, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12int-clustered.rds")
saveRDS(seurat.12.int.inter, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12intinter-clustered.rds")
saveRDS(seurat.12.int.inter2, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12intinter2-clustered.rds")
saveRDS(seurat.12.int.ilc, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12intilc-clustered.rds")
```
This section contains code for composition analysis of expression in datasets (graphics, comparisons, etc).
```{r Comparing phenotype composition}
## Visualize specific microbiome interaction genes by condition and cell type
## GSE 150050
markers.to.plot <- c("NOD2", "CARD9", "ATG16L1*", "IRGM")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15-microdotplot.png")
DotPlot(seurat.15.ilc, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
RotatedAxis()
dev.off()
seurat.15.ilc$celltype <- Idents(seurat.15.ilc)
plots <- VlnPlot(seurat.15.ilc, features = c("NOD2", "CARD9", "ATG16L1", "IRGM"), group.by = "celltype",
pt.size = 0, combine = FALSE, y.max = 2)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat15ilc-vinmicrogenes.png")
wrap_plots(plots = plots, ncol = 1)
dev.off()
## GSE 125527 intestines
markers.to.plot <- c("NOD2", "CARD9", "ATG16L1*", "IRGM")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intilc-microdotplot.png")
DotPlot(seurat.12.int.ilc, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8) +
RotatedAxis()
dev.off()
seurat.12.int.ilc$celltype <- Idents(seurat.12.int.ilc)
plots <- VlnPlot(seurat.12.int.ilc, features = c("NOD2", "CARD9", "ATG16L1", "IRGM"), group.by = "celltype",
pt.size = 0, combine = FALSE, y.max = 2)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12intilc-vinmicrogenes.png")
wrap_plots(plots = plots, ncol = 1)
dev.off()
```
---
Condition-based clustering and phenotype composition analysis
---
This section contains code for the integrated analysis of GSE125527 by condition (healthy or UC).
```{r Integrated clustering and cell type assignment (GSE 125527)}
## Cluster the cells
seurat.12 <- FindNeighbors(seurat.12, dims = 1:10)
seurat.12 <- FindClusters(seurat.12, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.12), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12 <- RunUMAP(seurat.12, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12-initialUMAP.png")
DimPlot(seurat.12, reduction = "umap", label = TRUE)
dev.off()
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12-initialUMAPcond.png")
DimPlot(seurat.12, reduction = "umap", group.by = "condition")
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
DefaultAssay(seurat.12) <- "RNA"
seurat.12.markers <- FindAllMarkers(seurat.12, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12 <- seurat.12.markers %>%
group_by(cluster) %>%
slice_max(n = 2, order_by = avg_log2FC)
write.table(manual.curate.12, file="manual.curate.12.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify cell types
### ILC1s: CD127/IL7R+, CD161/KLRB1+, ID2+, T-bet/TBX21+, CD294/PTGDR2-, CD117/KIT-
## ILC2s: CD127/IL7R+, CD161/KLRB1+, ID2+, CD294/PTGDR2+, GATA3+, CD117/KIT+-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, ID2+, CD294/PTGDR-, CD117/KIT+, IL23R+
### NKs: CD56/NCAM1+, EOMES+
### Ts: CD3/CD3D+ (definite), TBX21+
### Monocytes: CD14+
### Neutrophils, Basophils, Eosinophils, DCs: CD11b+
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12, features = c("CD3D", "CD8A", "ITGAM", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "ID2", "IL2RA", "THY1", "TBX21", "GATA3", "IL23R"), min.cutoff = "q9")
dev.off()
## Subset to cells with possible ILC identity (large bunch of clusters with scattered ILC marker expression, general lymphoid identity markers)
seurat.12.inter <- subset(seurat.12, idents = c(0, 1, 2, 4, 6, 7, 8, 9, 14))
## Cluster the cells
DefaultAssay(seurat.12.inter) <- "integrated"
seurat.12.inter <- FindNeighbors(seurat.12.inter, dims = 1:10)
seurat.12.inter <- FindClusters(seurat.12.inter, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.12.inter), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12.inter <- RunUMAP(seurat.12.inter, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12inter-initialUMAP.png")
DimPlot(seurat.12.inter, reduction = "umap", label = TRUE)
dev.off()
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12inter-initialUMAPcond.png")
DimPlot(seurat.12.inter, reduction = "umap", group.by = "condition")
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
DefaultAssay(seurat.12.inter) <- "RNA"
seurat.12.inter.markers <- FindAllMarkers(seurat.12.inter, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.ilc <- seurat.12.inter.markers %>%
group_by(cluster) %>%
slice_max(n = 2, order_by = avg_log2FC)
write.table(manual.curate.12.ilc, file="manual.curate.12.ilc.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify cell types
### ILC1s: CD127/IL7R+, CD161/KLRB1+, ID2+, T-bet/TBX21+, CD294/PTGDR2-, CD117/KIT-
## ILC2s: CD127/IL7R+, CD161/KLRB1+, ID2+, CD294/PTGDR2+, GATA3+, CD117/KIT+-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, ID2+, CD294/PTGDR-, CD117/KIT+, IL23R+
### NKs: CD56/NCAM1+, EOMES+
### Ts: CD3/CD3D+ (definite), TBX21+
### Monocytes: CD14+
### Neutrophils, Basophils, Eosinophils, DCs: CD11b+
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12inter-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12.inter, features = c("CD3D", "CD8A", "ITGAM", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "ID2", "IL2RA", "THY1", "TBX21", "GATA3", "IL23R"), min.cutoff = "q9")
dev.off()
## Assign identity to clusters
new.cluster.ids <- c("T cell", "T cell", "T cell", "NK cell or ILC", "T cell", "NK cell or ILC", "T cell", "Indeterminate", "T or NK cell", "Indeterminate")
names(new.cluster.ids) <- levels(seurat.12.inter)
seurat.12.inter <- RenameIdents(seurat.12.inter, new.cluster.ids)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12inter-labeledUMAP.png")
DimPlot(seurat.12.inter, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
dev.off()
## Subset to cells with possible ILC identity (NK or ILC, NK or T)
seurat.12.ilc <- subset(seurat.12.inter, idents = c("NK cell or ILC", "T or NK cell"))
## Cluster the cells
DefaultAssay(seurat.12.ilc) <- "integrated"
seurat.12.ilc <- FindNeighbors(seurat.12.ilc, dims = 1:10)
seurat.12.ilc <- FindClusters(seurat.12.ilc, resolution = 0.5)
### Look at cluster IDs of the first 5 cells
head(Idents(seurat.12.ilc), 5)
## Run non-linear dimensional reduction (UMAP/tSNE)
seurat.12.ilc <- RunUMAP(seurat.12.ilc, dims = 1:10)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12ilc-initialUMAP.png")
DimPlot(seurat.12.ilc, reduction = "umap", label = TRUE)
dev.off()
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12ilc-initialUMAPcond.png")
DimPlot(seurat.12.ilc, reduction = "umap", group.by = "condition")
dev.off()
## Find markers that differentiate clusters from one another (to help assign identities)
DefaultAssay(seurat.12.ilc) <- "RNA"
seurat.12.ilc.markers <- FindAllMarkers(seurat.12.ilc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.ilc <- seurat.12.ilc.markers %>%
group_by(cluster) %>%
slice_max(n = 4, order_by = avg_log2FC)
write.table(manual.curate.12.ilc, file="manual.curate.12.ilc.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific markers to identify cell types
### ILC1s: CD127/IL7R+, CD161/KLRB1+, ID2+, T-bet/TBX21+, CD294/PTGDR2-, CD117/KIT-
## ILC2s: CD127/IL7R+, CD161/KLRB1+, ID2+, CD294/PTGDR2+, GATA3+, CD117/KIT+-
### ILC3s: CD127/IL7R+, CD161/KLRB1+, ID2+, CD294/PTGDR-, CD117/KIT+, IL23R+
### NKs: CD56/NCAM1+, EOMES+
### Ts: CD3/CD3D+ (definite), TBX21+
### Monocytes: CD14+
### Neutrophils, Basophils, Eosinophils, DCs: CD11b+
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12ilc-initialmarkers.png", width= 700, height=480)
FeaturePlot(seurat.12.ilc, features = c("CD3D", "CD8A", "ITGAM", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "ID2", "IL2RA", "THY1", "TBX21", "GATA3", "IL23R"), min.cutoff = "q9")
dev.off()
## Assign identity to clusters
## Cells do not have discernable levels of specific identifying markers; UMAP/ clustering did not separate T cells from NKs and ILCs by marker expression
## Manual marker ID
# new.cluster.ids <- c("")
# names(new.cluster.ids) <- levels(seurat.12.ilc)
# seurat.12.ilc <- RenameIdents(seurat.12.ilc, new.cluster.ids)
# png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12ilc-labeledUMAP.png")
# DimPlot(seurat.12.ilc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()
# dev.off()
## Identify conserved markers
seurat.12.interc.markers <- FindConservedMarkers(seurat.12.inter, ident.1 = c("NK cell or ILC", "T or NK cell"), grouping.var = "condition", verbose = FALSE)
write.table(seurat.12.interc.markers, file="conserved.12.inter.txt", row.names=TRUE, col.names=TRUE)
## Visualize specific immune markers by condition and cell type
markers.to.plot <- c("CD3D", "CD8A", "ITGAM", "CD14", "CD19", "NCAM1", "EOMES", "IL7R", "KLRB1", "ID2", "IL2RA", "THY1", "TBX21", "GATA3", "IL23R")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat*12inter-immdotplot.png")
DotPlot(seurat.12.inter, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8, split.by = "condition") +
RotatedAxis()
dev.off()
## Visualize specific microbiome interaction genes by condition and cell type
markers.to.plot <- c("NOD2", "CARD9", "ATG16L1*", "IRGM")
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12inter-microdotplot.png")
DotPlot(seurat.12.inter, features = markers.to.plot, cols = c("blue", "red"), dot.scale = 8, split.by = "condition") +
RotatedAxis()
dev.off()
seurat.12.inter$celltype <- Idents(seurat.12.inter)
plots <- VlnPlot(seurat.12.inter, features = c("NOD2", "CARD9", "ATG16L1", "IRGM"), split.by = "condition", group.by = "celltype",
pt.size = 0, combine = FALSE)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12inter-vinmicrogenes.png")
wrap_plots(plots = plots, ncol = 1)
dev.off()
## Visualize specific microbiome interaction genes in cowplot format by condition and cell type
## All cells
theme_set(theme_cowplot())
Idents(seurat.12) <- "condition"
avg.seurat.12 <- as.data.frame(log1p(AverageExpression(seurat.12, verbose = FALSE)$RNA))
avg.seurat.12$gene <- rownames(avg.seurat.12)
genes.to.label = c("NOD2", "CARD9", "ATG16L1", "IRGM")
p9 <- ggplot(avg.seurat.12, aes(healthy, UC)) + geom_point() + ggtitle("All CD45+ cells")
p9 <- LabelPoints(plot = p9, points = genes.to.label, repel = TRUE)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12-diffmicrogenes.png")
p9
dev.off()
## Subsetted cells
Idents(seurat.12.ilc) <- "condition"
avg.ilcs <- as.data.frame(log1p(AverageExpression(seurat.12.ilc, verbose = FALSE)$RNA))
avg.ilcs$gene <- rownames(avg.ilcs)
genes.to.label = c("NOD2", "CARD9", "ATG16L1", "IRGM")
p9 <- ggplot(avg.ilcs, aes(healthy, UC)) + geom_point() + ggtitle("Selected immune cells")
p9 <- LabelPoints(plot = p9, points = genes.to.label, repel = TRUE)
png(file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/graphics/seurat12ilc-diffmicrogenes.png")
p9
dev.off()
## Save objects for future recall
saveRDS(seurat.12, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12-clustered.rds")
saveRDS(seurat.12.inter, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12inter-clustered.rds")
saveRDS(seurat.12.ilc, file = "C:/Users/Me/OneDrive - University of Nebraska at Omaha/Administrative/Documents/Senior Project/senior-capstone/rds/seurat12ilc-clustered.rds")
```
---
Metabolic pathway analysis
---
This section contains code for the KEGG metabolic pathway analysis sub-section.
```{r Extract differential expression matrices}
# GSE 150050
## All-cluster matrix
im.15.markers <- FindAllMarkers(seurat.15, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.15 <- im.15.markers %>%
group_by(cluster) %>%
slice_max(n = 10, order_by = avg_log2FC)
im.15.markers <- im.15.markers %>% dplyr::select(p_val, avg_log2FC)
im.15.markers <- rownames_to_column(im.15.markers, "gene_id")
# Replace 0s
im.15.markers$p_val[im.15.markers$p_val=="0"]<-1.0e-302
im.15.markers <- im.15.markers[c("gene_id", "avg_log2FC", "p_val")]
### ILC versus other clusters matrix
im.ilc.markers <- FindMarkers(seurat.15.ilc, ident.1 = c("ILC1", "ILC2", "ILC3"), min.pct = 0.25)
im.ilc.markers <- im.ilc.markers %>% dplyr::select(p_val, avg_log2FC)
im.ilc.markers <- rownames_to_column(im.ilc.markers, "gene_id")
# Replace 0s
im.ilc.markers$p_val[im.ilc.markers$p_val=="0"]<-1.0e-302
im.ilc.markers <- im.ilc.markers[c("gene_id", "avg_log2FC", "p_val")]
### ILC subsets versus each other matrices
im.ilc1.markers <- FindMarkers(seurat.15.ilc, ident.1 = "ILC1", indent.2 = c("ILC2", "ILC3"), min.pct = 0.25)
im.ilc1.markers <- im.ilc1.markers %>% dplyr::select(p_val, avg_log2FC)
im.ilc1.markers <- rownames_to_column(im.ilc1.markers, "gene_id")
# Replace 0s
im.ilc1.markers$p_val[im.ilc1.markers$p_val=="0"]<-1.0e-302
im.ilc2.markers <- FindMarkers(seurat.15.ilc, ident.1 = "ILC2", indent.2 = c("ILC1", "ILC3"), min.pct = 0.25)
im.ilc2.markers <- im.ilc2.markers %>% dplyr::select(p_val, avg_log2FC)
im.ilc2.markers <- rownames_to_column(im.ilc2.markers, "gene_id")
# Replace 0s
im.ilc2.markers$p_val[im.ilc2.markers$p_val=="0"]<-1.0e-302
im.ilc3.markers <- FindMarkers(seurat.15.ilc, ident.1 = "ILC3", indent.2 = c("ILC1", "ILC2"), min.pct = 0.25)
im.ilc3.markers <- im.ilc3.markers %>% dplyr::select(p_val, avg_log2FC)
im.ilc3.markers <- rownames_to_column(im.ilc3.markers, "gene_id")
# Replace 0s
im.ilc3.markers$p_val[im.ilc3.markers$p_val=="0"]<-1.0e-302
# GSE 125527
## Intestinal immune cells
## All-cluster matrix
int.12.markers <- FindAllMarkers(seurat.12.int, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
manual.curate.12.int <- int.12.markers %>%
group_by(cluster) %>%
slice_max(n = 10, order_by = avg_log2FC)
int.12.markers <- int.12.markers %>% dplyr::select(p_val, avg_log2FC)
int.12.markers <- rownames_to_column(int.12.markers, "gene_id")
# Replace 0s
int.12.markers$p_val[int.12.markers$p_val=="0"]<-1.0e-302
### ILC versus other clusters matrix
int.ilc.markers <- FindMarkers(seurat.12.int.ilc, ident.1 = "Contains ILCs", min.pct = 0.25)
int.ilc.markers <- int.ilc.markers %>% dplyr::select(p_val, avg_log2FC)
int.ilc.markers <- rownames_to_column(int.ilc.markers, "gene_id")
# Replace 0s
int.ilc.markers$p_val[int.ilc.markers$p_val=="0"]<-1.0e-302