-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN2D.csv
We can make this file beautiful and searchable if this error is corrected: No commas found in this CSV file in line 0.
173 lines (167 loc) · 8.36 KB
/
CNN2D.csv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
41.75054717063904 Tr_Time
1.5467400550842285 Va_Time
1.6886274814605713 Te_Time
8.740718364715576 HSI_Time
0.7735967636108398 DL_Time
79.85 Va Kappa (%)
82.33 Va Overall (%)
67.88 VA Average (%)
81.91 Te Kappa (%)
84.17 Te Overall (%)
71.73 Te Average (%)
90.23 HSI Kappa (%)
93.10820451843044 HSI Overall (%)
75.66000000000001 HSI Average (%)
precision recall f1-score support
Alfalfa 0.80 0.57 0.67 7
Corn-notill 0.80 0.75 0.77 214
Corn-mintill 0.77 0.77 0.77 125
Corn 0.64 0.58 0.61 36
Grass-pasture 0.91 0.94 0.93 72
Grass-trees 0.92 1.00 0.96 110
Grass-mowed 0.00 0.00 0.00 4
Hay-windrowed 1.00 0.99 0.99 72
Oats 0.00 0.00 0.00 3
Soybean-notill 0.68 0.75 0.71 146
Soybean-mintill 0.86 0.85 0.86 368
Soybean-clean 0.58 0.58 0.58 89
Wheat 1.00 0.84 0.91 31
Woods 0.93 0.97 0.95 190
Buildings 0.72 0.76 0.74 58
Stone-Steel 1.00 0.50 0.67 14
accuracy 0.82 1539
macro avg 0.72 0.68 0.69 1539
weighted avg 0.82 0.82 0.82 1539
VA Classification
[ 57.14285714 74.76635514 76.8 58.33333333 94.44444444
100. 0. 98.61111111 0. 75.34246575
85.05434783 58.42696629 83.87096774 97.36842105 75.86206897
50. ] VA Per Class
[[ 4 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0]
[ 0 160 7 5 0 0 0 0 0 12 16 13 0 1 0 0]
[ 0 5 96 2 0 0 0 0 0 6 12 3 0 0 1 0]
[ 0 5 0 21 0 0 0 0 0 0 0 9 0 1 0 0]
[ 0 0 0 0 68 3 0 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0]
[ 1 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0]
[ 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0]
[ 0 3 0 2 0 1 0 0 0 110 21 6 0 0 3 0]
[ 0 15 6 0 1 1 0 0 0 29 313 3 0 0 0 0]
[ 0 13 13 1 0 0 0 0 0 5 2 52 0 0 3 0]
[ 0 0 2 0 0 0 0 0 0 0 0 0 26 0 3 0]
[ 0 0 0 0 2 0 0 0 0 0 0 1 0 185 2 0]
[ 0 0 0 0 0 3 0 0 0 0 0 0 0 11 44 0]
[ 0 0 0 1 0 0 0 0 0 0 0 2 0 1 3 7]] VA Confussion
precision recall f1-score support
Alfalfa 0.88 0.70 0.78 33
Corn-notill 0.81 0.75 0.78 1000
Corn-mintill 0.77 0.81 0.79 581
Corn 0.76 0.46 0.57 166
Grass-pasture 0.93 0.94 0.93 339
Grass-trees 0.92 0.99 0.96 511
Grass-mowed 0.00 0.00 0.00 20
Hay-windrowed 1.00 0.99 0.99 335
Oats 0.00 0.00 0.00 14
Soybean-notill 0.73 0.74 0.74 681
Soybean-mintill 0.85 0.88 0.87 1719
Soybean-clean 0.64 0.63 0.63 416
Wheat 0.94 0.95 0.95 144
Woods 0.96 0.97 0.97 886
Buildings 0.78 0.82 0.80 271
Stone-Steel 0.92 0.83 0.87 66
accuracy 0.84 7182
macro avg 0.74 0.72 0.73 7182
weighted avg 0.84 0.84 0.84 7182
Te Classification
[69.6969697 75.4 81.06712565 45.78313253 94.10029499 99.41291585
0. 98.50746269 0. 74.44933921 88.24898197 63.22115385
95.13888889 97.40406321 81.91881919 83.33333333] Te Per Class
[[ 23 0 0 0 1 9 0 0 0 0 0 0 0 0
0 0]
[ 0 754 28 12 0 0 0 0 0 51 110 42 0 3
0 0]
[ 0 22 471 0 0 1 0 0 0 23 47 13 2 0
2 0]
[ 0 33 5 76 0 0 0 0 0 1 0 43 0 0
8 0]
[ 0 0 1 0 319 12 0 0 0 2 0 0 0 1
4 0]
[ 0 0 0 0 2 508 0 0 0 0 0 0 0 0
1 0]
[ 0 0 0 0 13 0 0 0 0 3 0 0 0 2
2 0]
[ 3 0 0 0 1 0 0 330 0 0 0 1 0 0
0 0]
[ 0 0 6 0 0 0 0 0 0 0 0 0 0 1
3 4]
[ 0 11 9 2 0 6 0 0 0 507 101 32 0 0
12 1]
[ 0 44 58 0 2 0 0 0 0 84 1517 12 0 0
2 0]
[ 0 67 33 6 0 0 0 0 0 24 13 263 0 0
10 0]
[ 0 0 4 0 0 1 0 0 0 0 0 0 137 0
2 0]
[ 0 0 0 0 5 0 0 0 0 0 0 5 0 863
13 0]
[ 0 0 0 0 1 13 0 0 0 0 0 1 6 28
222 0]
[ 0 0 0 4 0 0 0 0 0 1 0 2 0 0
4 55]] Te Confussion
precision recall f1-score support
Alfalfa 1.00 1.00 1.00 10822
Corn-notill 0.83 0.78 0.81 1428
Corn-mintill 0.79 0.83 0.81 830
Corn 0.78 0.55 0.65 237
Grass-pasture 0.93 0.95 0.94 483
Grass-trees 0.93 1.00 0.96 730
Grass-mowed 1.00 0.07 0.13 28
Hay-windrowed 1.00 0.99 0.99 478
Oats 1.00 0.05 0.10 20
Soybean-notill 0.75 0.78 0.76 972
Soybean-mintill 0.87 0.89 0.88 2455
Soybean-clean 0.68 0.67 0.67 593
Wheat 0.96 0.94 0.95 205
Woods 0.96 0.98 0.97 1265
Buildings 0.80 0.84 0.82 386
Stone-Steel 0.94 0.80 0.86 93
accuracy 0.93 21025
macro avg 0.89 0.76 0.77 21025
weighted avg 0.93 0.93 0.93 21025
HSI Classification
[99.87987433 78.36134454 82.77108434 54.85232068 95.0310559 99.5890411
7.14285714 98.74476987 5. 77.77777778 89.16496945 67.1163575
94.14634146 97.78656126 83.67875648 79.56989247] HSI Per Class
[[10809 0 0 0 2 11 0 0 0 0 0 0
0 0 0 0]
[ 0 1119 39 17 0 0 0 0 0 64 130 55
0 4 0 0]
[ 0 29 687 2 0 1 0 0 0 31 59 16
2 0 3 0]
[ 0 39 5 130 0 0 0 0 0 1 0 53
0 1 8 0]
[ 0 0 1 0 459 15 0 0 0 2 0 0
0 1 5 0]
[ 0 0 0 0 2 727 0 0 0 0 0 0
0 0 1 0]
[ 0 0 0 0 16 0 2 0 0 4 0 0
0 2 4 0]
[ 4 0 0 0 1 0 0 472 0 0 0 1
0 0 0 0]
[ 0 0 8 1 0 0 0 0 1 0 0 0
0 3 3 4]
[ 0 14 9 4 0 7 0 0 0 756 127 39
0 0 15 1]
[ 0 59 67 0 3 1 0 0 0 119 2189 15
0 0 2 0]
[ 0 81 49 7 0 0 0 0 0 29 16 398
0 0 13 0]
[ 0 0 6 0 0 1 0 0 0 0 0 0
193 0 5 0]
[ 0 0 0 0 7 0 0 0 0 0 0 6
0 1237 15 0]
[ 0 0 0 0 1 16 0 0 0 0 0 1
6 39 323 0]
[ 0 0 0 5 0 0 0 0 0 1 0 5
0 1 7 74]] HSI Confussion