This demo is associated with Unveiling the True Potential: Disjoint Sampling for Rigorous Evaluation for Land Cover Classification Submitted for possible publication.
@misc{ahmad2024importance, title={Unveiling the True Potential: Disjoint Sampling for Rigorous Evaluation for Land Cover Classification}, author={Muhammad Ahmad and Manuel Mazzara and Salvatore Distifano}, year={2024}, eprint={2404.14944}, archivePrefix={arXiv}, primaryClass={cs.CV} }
This tool is compatible with Python 2.7 and Python 3.5+ and executed over Colab.
Several public hyperspectral datasets are available on the EHU. Users can download those beforehand.
An example dataset folder has the following structure:
Datasets
├── University of Houston
│ ├── UH.mat
│ └── UG_gt.mat
├── IndianPines
│ ├── Indian_pines_corrected.mat
│ ├── Indian_pines_gt.mat
├── Pavia University
│ ├── PU.mat
│ └── PU_gt.mat
├── Botswana
│ ├── BS.mat
│ └── BS_gt.mat
├── Salinas
│ ├── SA.mat
│ └── SA_gt.mat