-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcool_nn.c
276 lines (233 loc) · 9.78 KB
/
cool_nn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#include "cool_nn.h"
cool_nn* cool_alloc(const char* nn_config) {
cool_nn *net = aalloc(sizeof(*net));
FILE *cfg_fp = fopen(nn_config, "r");
fscanf(cfg_fp, "%d\n", &net->layers_n);
net->layers = aalloc(sizeof(*net->layers) * net->layers_n);
net->layers_type = aalloc(sizeof(*net->layers_type) * net->layers_n);
for (int i = 0; i < net->layers_n; i++) {
char type_name[16];
fscanf(cfg_fp, "%s ", type_name);
int type = dec_layer_type(type_name);
int in_c, out_c, stride, f_size, padd, in_w, in_h, fc_size, activ;
net->layers_type[i] = type;
if (type == CONV) {
fscanf(cfg_fp, "%d %d %d %d %d %d %d\n", &in_c, &out_c, &stride, &f_size, &padd, &in_w, &in_h);
net->layers[i] = conv_alloc(in_c, in_w, in_h, out_c, f_size, stride, padd);
}
else if (type == FC) {
fscanf(cfg_fp, "%d %d\n", &in_c, &fc_size);
net->layers[i] = fc_alloc(in_c, fc_size);
}
else if (type == MAX_POOL) {
fscanf(cfg_fp, "%d %d %d %d %d %d\n", &stride, &f_size, &in_c, &padd, &in_w, &in_h);
net->layers[i] = pool_alloc(in_c, in_w, in_h, f_size, stride, padd);
}
else if (type == BN) {
fscanf(cfg_fp, "%d %d\n", &in_c, &f_size);
net->layers[i] = bn_alloc(in_c, f_size);
}
else if (type == ACTIVATION) {
char activ_name[16];
fscanf(cfg_fp, "%s\n", activ_name);
activ = dec_activation(activ_name);
net->layers[i] = activations_alloc(activ);
}
}
fclose(cfg_fp);
return net;
}
cool_nn* cool_load(const char* nn_config, const char* nn_state) {
FILE *nn_state_fp = fopen(nn_state, "rb");
cool_nn *net = cool_alloc(nn_config);
for (int i = 0; i < net->layers_n; i++) {
if (net->layers_type[i] == CONV) {
conv_layer *l = (conv_layer*)net->layers[i];
int w_size = l->out_c * l->f_size * l->f_size * l->in_c;
fread(l->filters->data, sizeof(float), w_size, nn_state_fp);
}
else if (net->layers_type[i] == FC) {
fc_layer *l = (fc_layer*)net->layers[i];
int in_dim = l->weights->rows, out_dim = l->weights->columns;
fread(l->weights->data, sizeof(float), in_dim * out_dim, nn_state_fp);
}
else if (net->layers_type[i] == BN) {
bn_layer *l = (bn_layer*)net->layers[i];
fread(l->gamma->data, sizeof(float), l->in_channels, nn_state_fp);
fread(l->beta->data, sizeof(float), l->in_channels, nn_state_fp);
fread(l->run_mean->data, sizeof(float), l->in_channels, nn_state_fp);
fread(l->run_var->data, sizeof(float), l->in_channels, nn_state_fp);
}
}
fclose(nn_state_fp);
return net;
}
void cool_save(cool_nn *net, const char* nn_state) {
FILE *nn_state_fp = fopen(nn_state, "wb");
for (int i = 0; i < net->layers_n; i++) {
if (net->layers_type[i] == CONV) {
conv_layer *l = (conv_layer*)net->layers[i];
int w_size = l->out_c * l->f_size * l->f_size * l->in_c;
fwrite(l->filters->data, sizeof(float), w_size, nn_state_fp);
}
else if (net->layers_type[i] == FC) {
fc_layer *l = (fc_layer*)net->layers[i];
int in_dim = l->weights->rows, out_dim = l->weights->columns;
fwrite(l->weights->data, sizeof(float), in_dim * out_dim, nn_state_fp);
}
else if (net->layers_type[i] == BN) {
bn_layer *l = (bn_layer*)net->layers[i];
fwrite(l->gamma->data, sizeof(float), l->in_channels, nn_state_fp);
fwrite(l->beta->data, sizeof(float), l->in_channels, nn_state_fp);
fwrite(l->run_mean->data, sizeof(float), l->in_channels, nn_state_fp);
fwrite(l->run_var->data, sizeof(float), l->in_channels, nn_state_fp);
}
}
fclose(nn_state_fp);
}
void cool_free(cool_nn *net) {
for (int i = 0; i < net->layers_n; i++) {
if (net->layers_type[i] == CONV) {
conv_free((conv_layer*)net->layers[i]);
}
else if (net->layers_type[i] == FC) {
fc_free((fc_layer*)net->layers[i]);
}
else if (net->layers_type[i] == MAX_POOL) {
pool_free((pool_layer*)net->layers[i]);
}
else if (net->layers_type[i] == BN) {
bn_free((bn_layer*)net->layers[i]);
}
else if (net->layers_type[i] == ACTIVATION) {
activations_free((activations_layer*)net->layers[i]);
}
}
free(net->layers_type);
free(net->layers);
free(net);
}
matrix* cool_forward(cool_nn *net, matrix *batch, bool training) {
matrix *curr = NULL, *in = mat_copy(batch);
for (int i = 0; i < net->layers_n; i++) {
if (curr != NULL) {
in = mat_copy(curr);
matrix_free(curr);
}
switch (net->layers_type[i]) {
case CONV:
curr = conv_forward((conv_layer*)net->layers[i], in);
break;
case FC:
curr = fc_forward((fc_layer*)net->layers[i], in);
break;
case MAX_POOL:
curr = pool_forward((pool_layer*)net->layers[i], in);
break;
case BN:
curr = bn_forward((bn_layer*)net->layers[i], in, training);
break;
case ACTIVATION:
curr = activations_forward((activations_layer*)net->layers[i], in);
break;
default:
break;
}
matrix_free(in);
}
softmax(curr);
return curr;
}
void cool_backward(cool_nn *net, matrix *prob, matrix *batch, int *indices, int *labels, float l_rate, float l_reg) {
matrix *in = prob_del(prob, indices, labels);
matrix *curr = NULL;
for (int i = net->layers_n - 1; i >= 0; i--) {
if (curr != NULL) {
in = mat_copy(curr);
matrix_free(curr);
}
switch (net->layers_type[i]) {
case CONV:
curr = conv_backward((conv_layer*)net->layers[i], in, l_rate);
break;
case FC:
curr = fc_backward((fc_layer*)net->layers[i], in, l_reg, l_rate);
break;
case MAX_POOL:
curr = pool_backward((pool_layer*)net->layers[i], in);
break;
case BN:
curr = bn_backward((bn_layer*)net->layers[i], in, l_rate);
break;
case ACTIVATION:
curr = activations_backward((activations_layer*)net->layers[i], in);
break;
default:
break;
}
matrix_free(in);
}
matrix_free(curr);
}
void cool_train(cool_nn *net, float **data_set, int *labels, int samples, float val_split, float l_rate, float l_reg, int batch_size, int epochs) {
int val_len = samples * val_split;
int train_samples = samples - val_len;
int *val_indices = NULL;
if (val_len > 0) {
val_indices = aalloc(sizeof(int) * val_len);
}
for (int i = 0; i < val_len; i++) {
val_indices[i] = i + train_samples;
}
int num_batches = train_samples % batch_size != 0 ?
(train_samples / batch_size) + 1
: train_samples / batch_size;
int input_dim = net->layers_type[0] == CONV ? (((conv_layer*)net->layers[0])->in_dim)
: (((fc_layer*)net->layers[0])->weights->rows);
for (int e = 1; e <= epochs; e++) {
int data_index = 0;
float total_loss = 0;
int *indices = random_indices(train_samples);
float _reg_loss = 0;
float acc = 0.0f;
for (int k = 0; k < num_batches; k++) {
// prepare batch
int batch_len = (data_index + batch_size >= train_samples) ?
train_samples - data_index : batch_size;
matrix *batch = get_batch(indices + data_index, data_set, batch_len, input_dim);
//forward step
matrix *prob = cool_forward(net, batch, true);
// compute loss
_reg_loss = reg_loss(net->layers, net->layers_type, net->layers_n, l_reg);
total_loss += loss(prob, indices + data_index, labels) + _reg_loss;
acc += accurracy(prob, indices + data_index, labels);
printf("\033[A\33[2K\r");
printf("Epoch: %d - Progress : %.02f%c - Accuracy : %.02f%c - Loss : %.02f\n", e, (float)(num_batches * (e - 1) + k) * 100.0f / (float)(epochs * num_batches), '%', 100.0f*acc/(k+1), '%', total_loss/(k+1));
// backpropagation step
cool_backward(net, prob, batch, indices + data_index, labels, l_rate, l_reg);
// update data index
data_index += batch_len;
//clean
matrix_free(prob);
matrix_free(batch);
}
free(indices);
if (val_len > 0) {
matrix *val = get_batch(val_indices, data_set, val_len, input_dim);
//forward step
matrix *val_prob = cool_forward(net, val, false);
// compute loss
float val_loss = loss(val_prob, val_indices, labels) + _reg_loss;
float val_acc = accurracy(val_prob, val_indices, labels);
printf("\033[A\33[2K\r");
printf("Epoch: %d loss: %g Accuracy: %g val_loss: %g val_acc: %g\nFinished\n", e, total_loss / (float)num_batches, acc / (float)num_batches, val_loss, val_acc);
matrix_free(val);
matrix_free(val_prob);
}
else {
printf("\033[A\33[2K\r");
printf("epoch: %d loss: %g accuracy: %g\nFinished\n", e, total_loss / (float)num_batches, acc / (float)num_batches);
}
}
free(val_indices);
}