-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_moe.py
172 lines (145 loc) · 5.96 KB
/
train_moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
from collections import Counter
from tqdm import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report
from models.net1d import Net1D, MyDataset
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import argparse
import pandas as pd
import sys
from utils import *
from utils_moe import *
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=64)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--data_path', type=str, default='./pickles')
parser.add_argument('--split_ratio', type=float, default=0.7)
parser.add_argument('--save_model', type=str, default='moe_nll.pt')
args = parser.parse_args()
# arguments
input_size = 6000
l_experts = os.listdir('./pretrained')
data_path = args.data_path
batch_size = args.batch
device = 'cpu' #torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# loading MoE model
print('loading models...')
model = MoE_HDM(input_size, l_experts, noisy_gating=True, k=len(l_experts))
model.to(device)
# setup components
dataloaders = setup_dataloaders(data_path, batch_size, r_split=0.7, n_train=50000)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
loss_func = nn.NLLLoss()
loss_func = loss_func.to(device)
results = np.zeros([args.epoch, 5])
best_acc = 0.0
for epoch in range(args.epoch):
# training phase
# Initialising the indicators and models
running_loss = 0.0
running_corrects = 0.0
# model setting
model.train()
for i in range(model.num_experts):
model.experts[i].eval()
model.zero_grad()
for batch_idx, batch in enumerate(dataloaders[0]):
sys.stdout.flush() # for writing results to a log file
# prediction
input, label = tuple(t.to(device) for t in batch)
pred, aux_loss = model(input)
loss = loss_func(pred, label)
total_loss = loss + aux_loss
# proceeding the training conditions
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# calculating the metrics
pred_labels = pred.max(1)[1]
running_corrects += torch.sum(pred_labels == label).item()
running_loss += loss.item()
# report for each batch
print('[Train] epoch: '+str(epoch)+' | batch: '+str(batch_idx)+' | loss: '+str(loss.item()))
# report for training phase
n_train = round(n_samples * args.split_ratio)
epoch_loss = running_loss / n_train
epoch_acc = running_corrects / n_train
results[epoch, :3] = np.array([epoch, epoch_loss, epoch_acc])
print('[Train total] epoch: '+str(epoch)+' | loss: '+str(epoch_loss)+' | acc:'+str(epoch_acc))
# validation phase
# Initialising the indicators and models
running_loss = 0.0
running_corrects = 0.0
model.eval()
model.zero_grad()
with torch.no_grad():
for batch_idx, batch in enumerate(dataloader_val):
sys.stdout.flush() # for writing results to a log file
# prediction
input, label = tuple(t.to(device) for t in batch)
pred, aux_loss = model(input)
loss = loss_func(pred, label)
total_loss = loss + aux_loss
# calculating the metrics
pred_labels = pred.max(1)[1]
running_corrects += torch.sum(pred_labels == label).item()
running_loss += loss.item()
# report for each batch
print('[Val] epoch: '+str(epoch)+' | batch: '+str(batch_idx)+' | loss: '+str(loss.item()))
# report for test phase
n_test = round(n_samples * (1 - args.split_ratio)/2)
epoch_loss = running_loss / n_test
epoch_acc = running_corrects / n_test
results[epoch, 3:] = np.array([epoch_loss, epoch_acc])
print('[Val total] epoch: '+str(epoch)+' | loss: '+str(epoch_loss)+' | acc:'+str(epoch_acc))
if best_acc <= epoch_acc:
best_acc = epoch_acc
print('///////////////////////////////////////////////////////////////////////')
print('--------> Best model has been replaced. epoch: '+str(epoch)+' best_acc: '+str(epoch_acc))
print('///////////////////////////////////////////////////////////////////////')
model_path = './models/'+args.save_model.split('.')[0]+'_epoch'+str(epoch)+'.pt'
torch.save(model.state_dict(), model_path)
print('best model has been saved in '+model_path)
# Recording the learning curve
df = pd.DataFrame(results, columns=['epoch', 'train_loss', 'train_acc', 'val_loss', 'val_acc'])
df.to_csv(args.save_model.split('.')[0]+'.csv')
print('The learning curve has been recorded.')
# Test
print('test will start')
model.eval()
model.zero_grad()
# Initialising the indicators
running_loss = 0.0
running_corrects = 0.0
with torch.no_grad():
for batch_idx, batch in enumerate(dataloader_test):
sys.stdout.flush() # for writing results to a log file
# prediction
input, label = tuple(t.to(device) for t in batch)
pred, aux_loss = model(input)
loss = loss_func(pred, label)
total_loss = loss + aux_loss
# calculating the metrics
pred_labels = pred.max(1)[1]
running_corrects += torch.sum(pred_labels == label).item()
running_loss += loss.item()
# report for each batch
print('[Test] epoch: '+str(epoch)+' | batch: '+str(batch_idx)+' | loss: '+str(loss.item()))
# report for test phase
n_test = round(n_samples * (1 - args.split_ratio)/2)
epoch_loss = running_loss / n_test
epoch_acc = running_corrects / n_test
results[epoch, 3:] = np.array([epoch_loss, epoch_acc])
print('[Test total] epoch: '+str(epoch)+' | loss: '+str(epoch_loss)+' | acc:'+str(epoch_acc))
# Recording the learning curve
df = pd.DataFrame(results, columns=['epoch', 'train_loss', 'train_acc', 'val_loss', 'val_acc'])
df.to_csv(args.save_model.split('.')[0]+'.csv')
print('ALL TRAINING PROCESSES HAVE BEEN COMPLETED.')
print('Test phase will start')