-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_expert.py
379 lines (336 loc) · 13.3 KB
/
train_expert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python
# coding: utf-8
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter
from torch.utils.data import Dataset, DataLoader
import math
import pickle
import random
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
from net1d import *
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--input', default='./XRD_epoch5.pkl',
help='path to the input pickle file')
parser.add_argument('--output', default='learning_curve.csv',
help='save learning curve as csv file')
parser.add_argument('--batch', default=16, type=int,
help='batch size')
parser.add_argument('--n_epoch', default=100, type=int,
help='number of training iteration')
args = parser.parse_args()
return args
# copied from https://github.com/4uiiurz1/pytorch-adacos/blob/master/metrics.py
class AdaCos(nn.Module):
def __init__(self, num_features, num_classes, m=0.50):
super(AdaCos, self).__init__()
self.num_features = num_features
self.n_classes = num_classes
self.s = math.sqrt(2) * math.log(num_classes - 1)
self.m = m
self.W = Parameter(torch.FloatTensor(num_classes, num_features))
nn.init.xavier_uniform_(self.W)
def forward(self, input, label=None):
# normalize features
x = F.normalize(input)
# normalize weights
W = F.normalize(self.W)
# dot product
logits = F.linear(x, W)
if label is None:
return logits
# feature re-scale
theta = torch.acos(torch.clamp(logits, -1.0 + 1e-7, 1.0 - 1e-7))
one_hot = torch.zeros_like(logits)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
with torch.no_grad():
B_avg = torch.where(one_hot < 1, torch.exp(self.s * logits), torch.zeros_like(logits))
B_avg = torch.sum(B_avg) / input.size(0)
# print(B_avg)
theta_med = torch.median(theta[one_hot == 1])
self.s = torch.log(B_avg) / torch.cos(torch.min(math.pi/4 * torch.ones_like(theta_med), theta_med))
output = self.s * logits
return output
# copied and modified from https://github.com/cvqluu/Angular-Penalty-Softmax-Losses-Pytorch
class AngularPenaltySMLoss(nn.Module):
def __init__(self, loss_type='cosface', eps=1e-7, s=None, m=None):
super(AngularPenaltySMLoss, self).__init__()
loss_type = loss_type.lower()
assert loss_type in ['arcface', 'sphereface', 'cosface']
if loss_type == 'arcface':
self.s = 64.0 if not s else s
self.m = 0.5 if not m else m
if loss_type == 'sphereface':
self.s = 64.0 if not s else s
self.m = 1.35 if not m else m
if loss_type == 'cosface':
self.s = 30.0 if not s else s
self.m = 0.4 if not m else m
self.loss_type = loss_type
self.eps = eps
def forward(self, x, labels):
'''
input shape (N, in_features)
'''
assert len(x) == len(labels)
assert torch.min(labels) >= 0
wf = x
if self.loss_type == 'cosface':
numerator = self.s * (torch.diagonal(wf.transpose(0, 1)[labels]) - self.m)
if self.loss_type == 'arcface':
numerator = self.s * torch.cos(torch.acos(torch.clamp(torch.diagonal(wf.transpose(0, 1)[labels]), -1.+self.eps, 1-self.eps)) + self.m)
if self.loss_type == 'sphereface':
numerator = self.s * torch.cos(self.m * torch.acos(torch.clamp(torch.diagonal(wf.transpose(0, 1)[labels]), -1.+self.eps, 1-self.eps)))
excl = torch.cat([torch.cat((wf[i, :y], wf[i, y+1:])).unsqueeze(0) for i, y in enumerate(labels)], dim=0)
denominator = torch.exp(numerator) + torch.sum(torch.exp(self.s * excl), dim=1)
L = numerator - torch.log(denominator)
return -torch.mean(L)
def spectra_loader(pickle_path):
with open(pickle_path, mode="rb") as f:
xrd_datasets = pickle.load(f)
return xrd_datasets
def normalise(spectra):
if type(spectra) is np.ndarray:
max_I = np.max(spectra)
min_I = np.min(spectra)
elif type(spectra) is torch.Tensor:
max_I = max(spectra)
min_I = min(spectra)
spectra_normed = (spectra - min_I) / (max_I - min_I)
return spectra_normed
def random_data_split(spectra, labels, settings):
thresh1 = round(settings[0]*settings[5])
thresh2 = round((settings[0] - thresh1)/2 + thresh1)
l = list(range(settings[0]))
lr = random.sample(l, settings[0])
data_train = np.array([spectra[idx] for idx in lr[:thresh1]])
data_val = np.array([spectra[idx] for idx in lr[thresh1:thresh2]])
data_test = np.array([spectra[idx] for idx in lr[thresh2:]])
labels_train = np.array([labels[idx] for idx in lr[:thresh1]])
labels_val = np.array([labels[idx] for idx in lr[thresh1:thresh2]])
labels_test = np.array([labels[idx] for idx in lr[thresh2:]])
return (data_train, data_val, data_test), (labels_train, labels_val, labels_test)
# copied part of code from https://github.com/PV-Lab/autoXRD
class data_augmentation():
def __init__(self, settings, settings_aug):
self.settings = settings
self.settings_aug = settings_aug
def peak_elimination(self, xrd):
random_window = torch.from_numpy(
np.random.choice([0,0,1], self.settings_aug[0]),
).to(self.settings[4])
dum1 = random_window.repeat(self.settings[2]//self.settings_aug[0])
xrd_el = torch.mul(xrd, dum1)
return xrd_el
def peak_scaling(self, xrd):
random_window = torch.rand(self.settings_aug[0]).to(self.settings[4])
dum2 = random_window.repeat(self.settings[2]//self.settings_aug[0])
xrd_sc = torch.mul(xrd, dum2)
return xrd_sc
def peak_shift(self, xrd):
cut = torch.randint(
-self.settings_aug[1],
self.settings_aug[1],
(1,),
).to(self.settings[4])
if cut >= 0:
xrd_sh = torch.cat(
[xrd[cut:], torch.zeros([cut,]).to(self.settings[4])],
0,
)
else:
xrd_sh = torch.cat(
[
xrd[0:self.settings[2]+cut,],
torch.zeros([-cut,]).to(self.settings[4])
],
0,
)
return xrd_sh
def forward(self, xrd):
if torch.rand(1) < self.settings_aug[2]:
xrd = self.peak_elimination(xrd)
if torch.rand(1) < self.settings_aug[3]:
xrd = self.peak_scaling(xrd)
if torch.rand(1) < self.settings_aug[4]:
xrd = self.peak_shift(xrd)
return normalise(xrd)
class AugmentedDataset(Dataset):
def __init__(self, tensors, settings, settings_aug):
self.tensors = tensors
self.settings = settings
self.settings_aug = settings_aug
self.augmentation = data_augmentation(settings, settings_aug)
def __getitem__(self, index):
x = torch.from_numpy(self.tensors[0][index][0]).to(self.settings[4])
x = self.augmentation.forward(x).unsqueeze(0)
y = torch.tensor(
self.tensors[1][index].astype(np.float32)
).to(self.settings[4])
return x, y
def __len__(self):
return len(self.tensors[0])
def AugmentedDataloader(spectra, labels, settings, settings_aug):
tensors = (spectra, labels)
ds = AugmentedDataset(
tensors,
settings,
settings_aug,
)
loader = DataLoader(
ds,
batch_size=settings[6],
shuffle=True,
)
return loader
def dataloader_preparation(pickle_path, split_ratio=0.7, batch_size=8):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load dataset
xrd_datasets = spectra_loader(pickle_path)
spectra = normalise(xrd_datasets[0][:, np.newaxis, :])
labels = xrd_datasets[1]
# measure the numbers of dataset shape
n_samples, n_channel, n_length = spectra.shape
n_class = len(np.unique(labels))
settings = (n_samples, n_channel, n_length, n_class, device, split_ratio, batch_size)
settings_aug = (100, 120, 0.2, 0.2, 0.5)
# (window size, max peak shift size, probability of peak elimination,
# probability of peak scailing, probability of peak shift)
# dataloaders
spectra_split, labels_split = random_data_split(spectra, labels, settings)
dataloader_train = AugmentedDataloader(
spectra_split[0],
labels_split[0],
settings,
settings_aug,
)
dataloader_val = DataLoader(
MyDataset(spectra_split[1],labels_split[1]),
batch_size=settings[6],
)
dataloader_test = DataLoader(
MyDataset(spectra_split[2],labels_split[2]),
batch_size=settings[6],
)
# compile dataloaders and settings
dataloaders = (dataloader_train, dataloader_val, dataloader_test)
return dataloaders, settings
def load_model(settings):
model = Net1D(
in_channels=settings[1],
base_filters=64,
ratio=1.0,
filter_list=[64,160,160,400,400,1024,1024],
m_blocks_list=[2,2,2,3,3,4,4],
kernel_size=16,
stride=2,
groups_width=16,
n_classes=settings[3],
verbose=False,
)
model.dense = AdaCos(1024,settings[3])
model.to(settings[4])
return model
# copied from https://gist.github.com/weiaicunzai/2a5ae6eac6712c70bde0630f3e76b77b
def top_k(pred, label, k:int = 1):
labels_dim = 1
k_labels = torch.topk(input=pred, k=k, dim=1, largest=True, sorted=True)[1]
a = ~torch.prod(
input = torch.abs(label.unsqueeze(labels_dim) - k_labels),
dim=labels_dim,
).to(torch.bool)
a = a.to(torch.int8)
y_pred = a * label + (1-a) * k_labels[:,0]
acc = accuracy_score(y_pred, label)*100
return acc
def record_learning_curve(lc_name, epoch, results, loss_train, acc_train, loss_val, acc_val):
results[epoch, :] = np.array([loss_train, acc_train, loss_val, acc_val])
df = pd.DataFrame(results, columns=['loss_train', 'acc_train', 'loss_val', 'acc_val'])
df.to_csv(lc_name)
def save_model(best_acc, epoch, model):
print('--------> The best model has been replaced.')
print('epoch: '+str(epoch)+' | best_acc: '+str(best_acc))
model_path = './regnet1d_adacos_epoch'+str(epoch)+'.pt'
torch.save(model.state_dict(), model_path)
print('The best model has been saved in '+model_path)
def train(dataloaders, settings, model, criterion, optimizer):
running_loss = 0.0
running_corrects = 0.0
model.train()
model.zero_grad()
for batch_idx, batch in enumerate(dataloaders[0]):
# train
input, label = tuple(t.to(settings[4]) for t in batch)
label = label.long()
pred = model(input)
loss = criterion(pred, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# evaluate
running_corrects += top_k(pred, label, k=5) * len(label)
running_loss += loss.item()
print('[Train] batch: '+str(batch_idx+1)+' | loss: '+str(loss.item()))
# summarise
n_train = round(settings[0] * settings[5])
epoch_loss = running_loss / n_train
epoch_acc = running_corrects / n_train
print('[Train total] loss: '+str(epoch_loss)+' | acc: '+str(epoch_acc))
return epoch_loss, epoch_acc
def val(dataloader, settings, model, criterion):
running_loss = 0.0
running_corrects = 0.0
model.eval()
model.zero_grad()
with torch.no_grad():
for batch_idx, batch in enumerate(dataloader):
# test
input, label = tuple(t.to(settings[4]) for t in batch)
label = label.long()
pred = model(input)
loss = criterion(pred, label)
# evaluate
running_corrects += top_k(pred, label, k=5) * len(label)
running_loss += loss.item()
print('[Val] batch: '+str(batch_idx+1)+' | loss: '+str(loss.item()))
# summarise
n_test = round(settings[0] * (1 - settings[5])/2)
epoch_loss = running_loss / n_test
epoch_acc = running_corrects / n_test
print('[Val total] loss: '+str(epoch_loss)+' | acc: '+str(epoch_acc))
return epoch_loss, epoch_acc
if __name__ == '__main__':
args = parse_args()
dataloaders, settings = dataloader_preparation(
args.input,
batch_size=args.batch,
)
model = load_model(settings)
criterion = AngularPenaltySMLoss(loss_type='cosface').to(settings[4])
optimizer = optim.Adam(model.parameters(), lr=1e-3)
best_acc = 0.0
results = np.zeros([args.n_epoch, 4])
for epoch in range(args.n_epoch):
print('>>>>>> epoch '+str(epoch)+' starts')
loss_train, acc_train = train(dataloaders, settings, model, criterion, optimizer)
loss_val, acc_val = val(dataloaders[1], settings, model, criterion)
record_learning_curve(
args.output,
epoch,
results,
loss_train,
acc_train,
loss_val,
acc_val,
)
# save better model
if best_acc <= acc_val:
best_acc = acc_val
save_model(best_acc, epoch, model)
loss_test, acc_test = val(dataloaders[2], settings, model, criterion)